English  日本語

Tetsuya Uematsu

Papers

Refereed papers

  1. T. Uematsu, On the Brauer group of affine diagonal quadrics,
    Journal of Number Theory, 163(2016), 146-158.
  2. T. Uematsu, Zero-cycles on diagonal cubic surfaces over $p$-adic fields,
    Mathematische Zeitschrift, 279(2015), no.3-4, 1047-1066.
  3. T. Uematsu, On the Brauer group of diagonal cubic surfaces,
    Quarterly Journal of Mathematics, 65 (2014), no. 2, 677-701.

Reserch report

  1. (Non-refereed) T. Uematsu, Brauer groups of some diagonal surfaces,
    Research Reports of the Faculty of Science and Technology, Meijo University, no.58, 2018, 13-19.
  2. (Non-refereed) T. Uematsu, On explicit presentation of the Brauer group of diagonal cubic curves(*Japanese),
    Hokkaido University technical report series in mathematics, no.173, 2018, 121-129.
  3. (Non-refereed) T. Uematsu, On the Brauer group of affine diagonal quadrics(*Japanese),
    Hokkaido University technical report series in mathematics, no.162, 2015, 105-108.
  4. (Non-refereed) T. Uematsu, H. Katsutani, N. Kanesaka, A. Takamura, M. Nishikawa, T. Yoshizawa and Y. Yonezawa, Effective utilization of Proficiency Tests in Practical Mathematics at Toyota National College of Technology(Japanese), Journal of Toyota National College of Technology, vol.47 (2014), 69-72.
  5. (Refereed) T. Uematsu, Symbolic generators of the Brauer group of diagonal cubic surfaces and their applications to zero-cycles,
    RIMS Kokyuroku Bessatsu B51: Algebraic Number Theory and Related Topics 2012, (2014) 157-162.
  6. (Non-refereed) T. Uematsu, A non-representability theorem on the Brauer group of diagonal cubic surfaces(*Japanese),
    In: Proceedings of 7th Fukuoka Symposium on Number Theory, 2013, 101-108. Electric ver.

Preprints

  1. T. Uematsu, A note on evaluation maps associated with the Brauer-Manin pairing. (2012). pdf (a revised version of master thesis)

Doctor thesis

Master thesis


Notes

  1. Brauer group of projective spaces. pdf
  2. An exact sequence attached to Brauer groups. pdf
  3. Continuity of the local evaluation maps. pdf