アフィン対角的 2 次曲面の Brauer 群について （On the Brauer group of affine diagonal quadrics）

Tetsuya Uematsu

National Institute of Technology，Toyota College
March 04， 2015.
11th MCYR（Hokkaido University）

Outline

(1) Introduction

- Introduction
(2) Brauer group
- Brauer group of fields
- Brauer group of varieties
- Uniform generators
(3) Results
- Results
- Comments

Our Result

Theorem (U-.)

There is no uniform generator for the Brauer group of affine diagonal quadrics.

What is ...

- Brauer group?
- Uniform generator ?
- Affine diagonal quadric ?

What is Brauer group?

Brauer group

- \boldsymbol{X} : an algebraic variety
(i.e. a topological space defined by common zeros of algebraic equations)
$\rightsquigarrow \operatorname{Br}(X)$: the Brauer group of X.
- $\operatorname{Br}(X)$ has many applications to geometry and arithmetic. - rationality problem, Hasse principle, Chow groups, etc...

Basic questions for $\operatorname{Br}(\boldsymbol{X})$

- How about its group structure? (Note: abelian by definition)
- How can we express its generator(s) in a useful fashion?

What is affine diagonal quadric?

Affine diagonal quadric

\boldsymbol{X} : an affine diagonal quadric, $\stackrel{\text { def }}{\Leftrightarrow}$ an affine variety in $\mathbb{A}^{\mathbf{3}}$ defined by the following equation

$$
x^{2}+B y^{2}+C z^{2}+D=0
$$

where $B, C, D \neq 0$.

What is uniform generator? - Naive Example

Question

Can we solve the following equation

$$
A x^{2}+B x+C=0 ?
$$

Answer
Of course YES!
Moreover, we can find the following uniform algebraic solution:

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

(if we assume the characteristic of a field is not equal to 2 .)

Uniform generator

 generator which is "algebraically parametrized".
Question

Question

Can we find a uniform generator of $\operatorname{Br}(\boldsymbol{X})$?

Answer
 NO!

Brauer group of fields

Definition

- k : a field
\rightsquigarrow the Brauer group $\operatorname{Br}(\boldsymbol{k})$ of \boldsymbol{k} is defined as the classifying space of Morita equivalent classes of isomorphism classes of central simple algebras over \boldsymbol{k}.
-We can take the class of a central skew field over \boldsymbol{k} as each representative.
- $\operatorname{Br}(\boldsymbol{k})$ can be defined as follows:
where

$$
\operatorname{Br}(k):=H^{2}\left(G_{k}, \bar{k}^{*}\right)
$$

- $\overline{\boldsymbol{k}}=$ a separable closure of \boldsymbol{k},
- $G_{k}=\operatorname{Gal}(\bar{k} / k)$.
- $\operatorname{Br}(k)$ has many applications to algebra and number theory.

Symbol

- k : a field, n : a positive integer with $(n, \operatorname{ch} k)=1$
- Assume \boldsymbol{k} contains a primitive \boldsymbol{n}-th root ζ_{n} of unity
- $\mu_{n}:=\left\langle\zeta_{n}\right\rangle\left(\cong \mathbb{Z} / \boldsymbol{n} \mathbb{Z}\right.$ as $\boldsymbol{G}_{\boldsymbol{k}}$-modules $)$

Definition (Norm residue map)

The \boldsymbol{n}-th norm residue map

$$
\{\cdot, \cdot\}_{n}: k^{*} \otimes_{\mathbb{Z}} k^{*} \rightarrow{ }_{n} \operatorname{Br}(k)
$$

is defined to be the following composite:

$$
\begin{array}{ll}
k^{*} \otimes_{\mathbb{Z}} \boldsymbol{k}^{*} & \\
\cong \boldsymbol{H}^{1}\left(G_{k}, \mu_{n}\right) \otimes_{\mathbb{Z}} \boldsymbol{H}^{1}\left(G_{k}, \mu_{n}\right) & \text { (Kummer seq.) } \\
\xrightarrow{\hookrightarrow} \boldsymbol{H}^{2}\left(G_{k}, \mu_{n} \otimes \mu_{n}\right) & \text { (cup product) } \\
\cong H^{2}\left(G_{k}, \mu_{n}\right) & \text { (} \left.\mu_{n} \cong \mathbb{Z} / n \mathbb{Z}\right) \\
\cong{ }_{n} \operatorname{Br}(\boldsymbol{k}) & \text { (Kummer seq.) }
\end{array}
$$

Examples

Example

- $\operatorname{Br}(\mathbb{C})=0$.
- $\operatorname{Br}(\mathbb{F})=0, \quad \operatorname{Br}(\mathbb{C}(t))=0$.
- $\operatorname{Br}(\mathbb{R})=\mathbb{Z} / 2 \mathbb{Z}$.

The only non-trivial element is the class of \mathbb{H} :

$$
\mathbb{H}=\mathbb{R} \oplus \mathbb{R} \boldsymbol{i} \oplus \mathbb{R} \boldsymbol{j} \oplus \mathbb{R} \boldsymbol{k}
$$

with $i^{2}=j^{2}=k^{2}=i j k=-1$.
We also have

$$
[\mathbb{H}]=\{-1,-1\}_{2}
$$

- $\operatorname{Br}\left(\mathbb{Q}_{p}\right)=\mathbb{Q} / \mathbb{Z}$.

Brauer group of varieties

Definition (Brauer group of varieties)

For a variety $\boldsymbol{\pi}: \boldsymbol{X} \rightarrow \boldsymbol{S p e c} \boldsymbol{k}$, define:

- the Brauer group of \boldsymbol{X} :

$$
\operatorname{Br}(\boldsymbol{X}):=\boldsymbol{H}_{\mathrm{et}}^{2}\left(\boldsymbol{X}, \mathbb{G}_{m}\right)
$$

- We have $\pi^{*}: \operatorname{Br}(\boldsymbol{k}) \rightarrow \operatorname{Br}(\boldsymbol{X})$.
- Put $\operatorname{Br}(X) / \operatorname{Br}(k)=\operatorname{Br}(X) / \pi^{*} \operatorname{Br}(k)$.

$\operatorname{Br}(\boldsymbol{X})$ v.s. $\operatorname{Br}(\boldsymbol{k}(\boldsymbol{X}))$

- $\boldsymbol{k}(\boldsymbol{X})$: the function field of \boldsymbol{X}.
- We have $\operatorname{Br}(\boldsymbol{X}) \rightarrow \operatorname{Br}(\boldsymbol{k}(\boldsymbol{X}))$.
- If \boldsymbol{X} is smooth, $\operatorname{Br}(\boldsymbol{X}) \hookrightarrow \operatorname{Br}(\boldsymbol{k}(\boldsymbol{X}))$
\rightsquigarrow elements of $\operatorname{Br}(\boldsymbol{X})$ may be expressed by symbols in $\operatorname{Br}(\boldsymbol{k}(\boldsymbol{X}))$.

Brauer group of affine diagonal quadrics

Affine diagonal quadric

Let \boldsymbol{k} be a field of characteristic zero.
$\boldsymbol{U}_{b, c, d}$: affine diagonal quadrics in $\mathbb{A}^{\mathbf{3}}$ defined by

$$
x^{2}+b y^{2}+c z^{2}+d=0
$$

where $\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{k}^{*}$.
(Note that \boldsymbol{U} is (geometrically) rational.)
Proposition (Structure of $\operatorname{Br}\left(U_{b, c, d}\right)$)

$$
\operatorname{Br}\left(\boldsymbol{U}_{b, c, d}\right) / \operatorname{Br}(\boldsymbol{k}) \cong \mathbb{Z} / \mathbf{Z} \mathbb{Z} \text { or } \mathbf{0}
$$

Definition (Domain of parameters)

$$
\mathcal{P}_{k}:=\left\{(b, c, d) \mid \operatorname{Br}\left(U_{b, c, d}\right) / \operatorname{Br}(k) \cong \mathbb{Z} / 2 \mathbb{Z} .\right\}
$$

Formulation of uniform generator

Setting

- $\mathcal{O}_{F}=k[B, C, D]$.
- $\mathbb{A}_{k}^{3}=\operatorname{Spec} \mathcal{O}_{F}$.
(3-dimensional parameter space)
- $F=\operatorname{Frac} \mathcal{O}_{F}=k(B, C, D)$.
- $\mathcal{U}=\left\{x^{2}+B y^{2}+C z^{2}+D=0\right\}$ over \mathbb{A}_{k}^{3},
i.e. a 3-parameter family of affine diagonal quadrics over \boldsymbol{k}.
- $U=\left\{x^{2}+B y^{2}+C z^{2}+D=0\right\}$ over F.
- For $P=(b, c, d) \in k^{*} \times k^{*} \times \boldsymbol{k}^{*}$, $U_{P}=\left\{x^{2}+b y^{2}+c z^{2}+d=0\right\}$ over k.

Formulation of uniform generator

Definition (Specialization map)

- $\forall e \in \operatorname{Br}(\boldsymbol{U})(=$ the Brauer group of the family),
- \exists (Zariski) dense open $\boldsymbol{W} \subset \mathbb{A}_{k}^{3}$ s.t.
- $\forall \boldsymbol{P} \in \boldsymbol{W}(\boldsymbol{k})$, we can define $\mathbf{s p}(\boldsymbol{e} ; \boldsymbol{P}) \in \operatorname{Br}\left(U_{P}\right)$. We call $\mathbf{s p}(\boldsymbol{e} ; \boldsymbol{P})$ the specialization of e at P.

Definition (Uniform generator)

$e \in \operatorname{Br}(U)$ is a uniform generator $\stackrel{\text { def }}{\Leftrightarrow} \exists$ dense open $\boldsymbol{W} \subset \mathbb{A}_{\boldsymbol{k}}^{\mathbf{3}}$ s.t. $\forall \boldsymbol{P} \in \boldsymbol{W}(\boldsymbol{k}) \cap \mathcal{P}_{\boldsymbol{k}}$, $\operatorname{sp}(e ; P) \in \operatorname{Br}\left(U_{P}\right) / \operatorname{Br}(k)$ is its generator.

Additional assumption

In the following, we must assume k is non- 2 -closed. Then we assure that $W(\boldsymbol{k}) \cap \mathcal{P}_{\boldsymbol{k}} \neq \emptyset$ for all dense open set $\boldsymbol{W} \subset \mathbb{A}_{\boldsymbol{k}}^{\mathbf{3}}$.

An existence result

- $\mathcal{O}_{F}=k[C, D], \quad F=k(C, D)$.
- \mathcal{V} : a 2-parameter family of affine diagonal quadrics defined as

$$
\left\{x^{2}-y^{2}-C z^{2}+D=0\right\} \text { over } \mathcal{O}_{F}
$$

- $V=\left\{x^{2}-y^{2}-C z^{2}+D=0\right\}$ over F.
- In this setting, we can also define the domain $\mathcal{P}_{\boldsymbol{k}}$ and specializations $\mathbf{s p}(\cdot ; \cdot)$.
- $e:=\{C D, x+y\}_{2} \in \operatorname{Br}(F(V))$.
- Recall $\operatorname{Br}(V) \subset \operatorname{Br}(F(V))$.

Proposition (U-.)

(1) e is in $\operatorname{Br}(V)$.
(2) e is a uniform generator.

Main Result

Recall:

- $\mathcal{O}_{F}=k[B, C, D], \quad F=k(B, C, D)$.
- \mathcal{U} : a 3-parameter family of affine diagonal quadrics defined as

$$
\left\{x^{2}+B y^{2}+C z^{2}+D=0\right\} \text { over } \mathcal{O}_{F}
$$

- $U=\left\{x^{2}+B y^{2}+C z^{2}+D=0\right\}$ over F.

Theorem (U-.)

For this 3-parameter family, there is no uniform generator.

Some comments

- To prove the theorem, it is essential to prove

$$
\operatorname{Br}(V) / \operatorname{Br}(F)=0
$$

We have done this by lengthy computation...
(by proving $\boldsymbol{d}^{\mathbf{1 , 1}}: \boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{G}_{\boldsymbol{F}}, \operatorname{Pic}(\overline{\boldsymbol{V}})\right) \rightarrow \boldsymbol{H}^{\mathbf{3}}\left(\boldsymbol{G}_{\boldsymbol{F}}, \overline{\boldsymbol{F}}^{*}\right)$ is not zero)
Can we find another strategy?

- Our results tell us the non-existence of such uniform generators implicitly relates the complexity of a given family.
- How about other class of surfaces?
-we've already done in the case of (projective) diagonal cubic surfaces.
- Similar problem for unramified cohomology?
-group structure?
-generator?

Thank you for your attention!

