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Our Result

Theorem (U-.)

There is no uniform generator for the Brauer group of affine
diagonal quadrics.

What is ...

Brauer group ?

Uniform generator ?

Affine diagonal quadric ?
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What is Brauer group?

Brauer group

X: an algebraic variety
(i.e. a topological space defined by common zeros of algebraic
equations)
 Br(X): the Brauer group of X.

Br(X) has many applications to geometry and arithmetic.
- rationality problem, Hasse principle, Chow groups, etc...

Basic questions for Br(X)

How about its group structure? (Note: abelian by definition)

How can we express its generator(s) in a useful fashion?
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What is affine diagonal quadric?

Affine diagonal quadric

X: an affine diagonal quadric,
def⇔ an affine variety in A3 defined by the following equation

x2 + By2 + Cz2 + D = 0,

where B,C,D 6= 0.
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What is uniform generator? – Naive Example

Question

Can we solve the following equation

Ax2 + Bx + C = 0 ?

Answer

Of course YES!
Moreover, we can find the following uniform algebraic solution:

x =
−B ±

√
B2 − 4AC

2A
.

(if we assume the characteristic of a field is not equal to 2.)

Uniform generator

generator which is “algebraically parametrized”.
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Question

Question

Can we find a uniform generator of Br(X) ?

Answer

NO!
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Brauer group of fields
Brauer group of varieties
Uniform generators

Brauer group of fields

Definition

k: a field
 the Brauer group Br(k) of k is defined as the classifying
space of Morita equivalent classes of isomorphism classes of
central simple algebras over k.
-We can take the class of a central skew field over k as each
representative.

Br(k) can be defined as follows:

Br(k) := H2(Gk, k
∗
),

where

k = a separable closure of k,
Gk = Gal(k/k).

Br(k) has many applications to algebra and number theory.
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Symbol

k: a field, n: a positive integer with (n, ch k) = 1
Assume k contains a primitive n-th root ζn of unity
µn := 〈ζn〉 (∼= Z /nZ as Gk-modules)

Definition (Norm residue map)

The n-th norm residue map

{·, ·}n : k∗ ⊗Z k∗ → nBr(k)

is defined to be the following composite:

k∗ ⊗Z k∗

∼= H1(Gk, µn) ⊗Z H1(Gk, µn) (Kummer seq.)
∪→ H2(Gk, µn ⊗ µn) (cup product)

∼= H2(Gk, µn) (µn
∼= Z /nZ)

∼= nBr(k) (Kummer seq.)
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Examples

Example

Br(C) = 0.

Br(F) = 0, Br(C(t)) = 0.

Br(R) = Z /2Z.
The only non-trivial element is the class of H:

H = R⊕R i ⊕ R j ⊕ R k

with i2 = j2 = k2 = ijk = −1.
We also have

[H] = {−1,−1}2

Br(Qp) = Q /Z.
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Brauer group of varieties

Definition (Brauer group of varieties)

For a variety π : X → Spec k, define:

the Brauer group of X:

Br(X) := H2
ét(X,Gm).

We have π∗ : Br(k) → Br(X).

Put Br(X)/Br(k) = Br(X)/π∗ Br(k).

Br(X) v.s. Br(k(X))

k(X): the function field of X.

We have Br(X) → Br(k(X)).

If X is smooth, Br(X) ↪→ Br(k(X))
 elements of Br(X) may be expressed by symbols in
Br(k(X)).
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Brauer group of affine diagonal quadrics

Affine diagonal quadric

Let k be a field of characteristic zero.
Ub,c,d: affine diagonal quadrics in A3 defined by

x2 + by2 + cz2 + d = 0,

where b, c, d ∈ k∗.
(Note that U is (geometrically) rational.)

Proposition (Structure of Br(Ub,c,d))

Br(Ub,c,d)/Br(k) ∼= Z /2Z or 0.

Definition (Domain of parameters)

Pk := {(b, c, d) | Br(Ub,c,d)/Br(k) ∼= Z /2Z .}
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Formulation of uniform generator

Setting

OF = k[B,C,D].

A3
k = SpecOF .

(3-dimensional parameter space)

F = FracOF = k(B,C,D).

U = {x2 + By2 + Cz2 + D = 0} over A3
k,

i.e. a 3-parameter family of affine diagonal quadrics over k.

U = {x2 + By2 + Cz2 + D = 0} over F .

For P = (b, c, d) ∈ k∗ × k∗ × k∗,
UP = {x2 + by2 + cz2 + d = 0} over k.
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Formulation of uniform generator

Definition (Specialization map)

∀e ∈ Br(U)(=the Brauer group of the family),

∃ (Zariski) dense open W ⊂ A3
k s.t.

∀P ∈ W (k), we can define sp(e;P ) ∈ Br(UP ).
We call sp(e;P ) the specialization of e at P .

Definition (Uniform generator)

e ∈ Br(U) is a uniform generator
def⇔ ∃ dense open W ⊂ A3

k s.t. ∀P ∈ W (k) ∩ Pk,
sp(e;P ) ∈ Br(UP )/Br(k) is its generator.

Additional assumption

In the following, we must assume k is non-2-closed. Then we
assure that W (k) ∩ Pk 6= ∅ for all dense open set W ⊂ A3

k.
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An existence result

OF = k[C,D], F = k(C,D).

V : a 2-parameter family of affine diagonal quadrics defined as

{x2 − y2 − Cz2 + D = 0} over OF .

V = {x2 − y2 − Cz2 + D = 0} over F .

In this setting, we can also define the domain Pk and
specializations sp(·; ·).
e := {CD, x + y}2 ∈ Br(F (V )).

Recall Br(V ) ⊂ Br(F (V )).

Proposition (U-.)

1 e is in Br(V ).

2 e is a uniform generator.
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Main Result

Recall:

OF = k[B,C,D], F = k(B,C,D).

U : a 3-parameter family of affine diagonal quadrics defined as

{x2 + By2 + Cz2 + D = 0} over OF .

U = {x2 + By2 + Cz2 + D = 0} over F .

Theorem (U-.)

For this 3-parameter family, there is no uniform generator.
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Some comments

To prove the theorem, it is essential to prove

Br(V )/Br(F ) = 0.

We have done this by lengthy computation...
(by proving d1,1 : H1(GF ,Pic(V )) → H3(GF , F

∗
) is not

zero)
Can we find another strategy?

Our results tell us the non-existence of such uniform
generators implicitly relates the complexity of a given family.

How about other class of surfaces?
-we’ve already done in the case of (projective) diagonal cubic
surfaces.

Similar problem for unramified cohomology?
-group structure?
-generator?
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Thank you for your attention!
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