p 進体上の対角的 $\mathbf{3}$ 次曲面のゼロサイクルについて On zero－cycles on diagonal cubic surfaces over \boldsymbol{p}－adic fields

Tetsuya UEMATSU（植松 哲也）

Chuo University／Tokyo National College of Technology

March 18，2014．／MSJ Spring Meeting 2014 （Gakushuin University）

Definition (Chow group of zero-cycles)

For a variety $\boldsymbol{X} / \boldsymbol{k}$, we define:

- the group of zero-cycles on \boldsymbol{X} :

$$
Z_{0}(X):=\bigoplus_{P: \text { closed pts. }} \mathbb{Z}[P]
$$

- the $\mathbf{0}$-th Chow group of \boldsymbol{X} :

$$
C H_{0}(X):=Z_{0}(X) / \sim_{r a t}
$$

where $\sim_{r a t}$ is the rational equivalence on $Z_{0}(X)$.

- degree zero part of $\boldsymbol{C H}_{\mathbf{0}}(\boldsymbol{X})$:

$$
A_{0}(X):=\operatorname{Ker}\left(\operatorname{deg}: C H_{0}(X) \rightarrow \mathbb{Z}\right)
$$

where $\operatorname{deg}\left(\sum \boldsymbol{n}_{\boldsymbol{i}}\left[\boldsymbol{P}_{\boldsymbol{i}}\right]\right)=\sum \boldsymbol{n}_{\boldsymbol{i}}\left[\boldsymbol{\kappa}\left(\boldsymbol{P}_{\boldsymbol{i}}\right): k\right]$.

Definition (Brauer group of a variety)

For a variety $\boldsymbol{X} / \boldsymbol{k}$, define:

- the Brauer group of \boldsymbol{X} :

$$
\operatorname{Br}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{m}\right)
$$

- Put $\operatorname{Br}(X) / \operatorname{Br}(k)=\operatorname{Br}(X) / \operatorname{Im}(\operatorname{Br}(k) \rightarrow \operatorname{Br}(X))$.

Definition (Diagonal cubic surfaces)

Fix a field \boldsymbol{k}. A diagonal cubic surface \boldsymbol{X} over \boldsymbol{k} is a smooth projective surface defined by

$$
X=\operatorname{Proj} k[x, y, z, t] /\left(a x^{3}+b y^{3}+c z^{3}+d t^{3}\right)
$$

where $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{k}^{*}$.

Theorem (Colliot-Thélène-Saito, Saito-Sato.)

- \boldsymbol{k} : a \boldsymbol{p}-adic field.
- $d \in k^{*} \backslash\left(k^{*}\right)^{3}$.
- \boldsymbol{X} : the d. c. s. over \boldsymbol{k} defined by $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{3}}+\boldsymbol{z}^{3}+d \boldsymbol{t}^{\mathbf{3}}=\mathbf{0}$.
(1) If $\boldsymbol{p} \neq \mathbf{3}$, we have

$$
A_{0}(X) \cong\left\{\begin{array}{lll}
0 & \text { if } \operatorname{ord}(d) \equiv 0 & \bmod 3 \\
\mathbb{Z} / 3 \mathbb{Z} & \text { if } \operatorname{ord}(d) \not \equiv 0 & \bmod 3 \text { and } \zeta \notin k \\
(\mathbb{Z} / \mathbf{Z} \mathbb{Z})^{2} & \text { if } \operatorname{ord}(d) \not \equiv 0 & \bmod 3 \text { and } \zeta \in k
\end{array}\right.
$$

(2) If $\boldsymbol{p}=\mathbf{3}, \boldsymbol{\zeta}=\zeta_{\mathbf{3}} \in \boldsymbol{k}$ and $\operatorname{ord}(d) \equiv 1 \bmod 3$, then

$$
A_{0}(X) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}
$$

Question 1 (about structure)

If $p=3$, How about $\operatorname{ord}(d) \not \equiv 1$ cases?

Theorem 1 (U-.)

- k : a 3-adic field, $\zeta \in k$
- $d \in k^{*} \backslash\left(k^{*}\right)^{3}$.
- X : the d. c. s. over k defined by $x^{3}+y^{3}+z^{3}+d t^{3}=\mathbf{0}$.

Assume moreover:

- ord $(d) \equiv 2 \bmod 3$.
- the absolute ramification index of \boldsymbol{k} is greater than $\mathbf{3}$.

Then we have

$$
A_{0}(X) \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}
$$

Question 2 (about structure)

How about $X: x^{3}+y^{3}+c z^{3}+d t^{3}=0$ case?

Theorem 2. (U-.)

- \boldsymbol{k} : a \boldsymbol{p}-adic field.
- $c, d \in k^{*} \backslash\left(k^{*}\right)$ with $c d, c / d \notin\left(k^{*}\right)^{3}$.
- \boldsymbol{X} : the d. c. s. over \boldsymbol{k} defined by $\boldsymbol{x}^{3}+y^{3}+c z^{3}+d t^{3}=\mathbf{0}$.
(1) If $\boldsymbol{p} \neq \mathbf{3}$, we have

$$
A_{0}(X)= \begin{cases}0 & \text { if } \operatorname{ord}(c) \equiv \operatorname{ord}(d) \equiv 0 \quad \bmod 3 \\ \mathbb{Z} / 3 \mathbb{Z} & \text { otherwise }\end{cases}
$$

(2) If $\boldsymbol{p}=\mathbf{3}, \boldsymbol{\zeta} \in \boldsymbol{k}, \operatorname{ord}(\boldsymbol{c}-\mathbf{1})$ is greater then the absolute ramification index of k and $\operatorname{ord}(d) \equiv 1 \bmod 3$, then

$$
A_{0}(X) \cong \mathbb{Z} / 3 \mathbb{Z}
$$

Question 3 (about generator)

Which zero-cycles generate $\boldsymbol{C H}_{\mathbf{0}}(\boldsymbol{X})$?

Theorem 3 (U-.)

- \boldsymbol{k} : a \boldsymbol{p}-adic field. $\zeta \in \boldsymbol{k}^{*}$
- $p \neq 3$.
- $d \in k^{*} \backslash\left(k^{*}\right)^{3}$.
- \boldsymbol{X} : the d. c. s. over \boldsymbol{k} defined by $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{y}^{3}+z^{3}+\boldsymbol{d} t^{3}=\mathbf{0}$.

Then $\mathbf{C H}_{\mathbf{0}}(\boldsymbol{X})$ is generated by the classes of rational points.

- \boldsymbol{k} : a \boldsymbol{p}-adic field.
- \boldsymbol{X} : a smooth projective variety over \boldsymbol{k}.

Definition (Brauer-Manin pairing)

- Manin defined the following pairing

$$
\langle\cdot, \cdot\rangle: \operatorname{Br}(X) \times C H_{0}(X) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

given by

$$
\left\langle\alpha, \sum n_{i}\left[P_{i}\right]\right\rangle=\sum n_{i} \operatorname{inv}_{k} \operatorname{cores}_{\kappa\left(P_{i}\right) / k} \alpha\left(P_{i}\right)
$$

- This pairing induces a map:

$$
\phi_{X}: A_{0}(X) \rightarrow \operatorname{Hom}(\operatorname{Br}(X) / \operatorname{Br}(k), \mathbb{Q} / \mathbb{Z})
$$

About this $\phi_{\boldsymbol{X}}$, we know the following:

Theorem (Colliot-Thélène.)

If \boldsymbol{X} is a rational surface, then the map $\phi_{\boldsymbol{X}}$ is injective.

Theorem (Saito-Sato.)

- \mathcal{U} : regular in codimension one, faithfully flat over $\mathcal{O}_{\boldsymbol{k}}$.
- $\boldsymbol{X}:=\mathcal{U} \times \mathcal{O}_{k} \boldsymbol{k}$: smooth over $\boldsymbol{k}, \boldsymbol{Y}:=\mathcal{U} \times \mathcal{O}_{k} \mathbb{F}$
- $\boldsymbol{\eta}$: a generic point of \boldsymbol{Y}
- $\boldsymbol{A}_{\boldsymbol{\eta}}:=\mathcal{O}_{\mathcal{U}, \boldsymbol{\eta}}^{h}, \boldsymbol{K}_{\boldsymbol{\eta}}:$ the fractional field of $\boldsymbol{A}_{\boldsymbol{\eta}}$.
- $\iota: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{\eta}\right)$.

Assume $\iota^{-1}\left(\operatorname{Br}\left(A_{\eta}\right)\right) \subset \operatorname{Im}(\operatorname{Br}(k) \rightarrow \operatorname{Br}(X))$. Then ϕ_{X} is surjective.

Recall:

Theorem 3 (U-.)

- k : a p-adic field. $\zeta \in \boldsymbol{k}^{*}$
- $p \neq 3$.
- $d \in k^{*} \backslash\left(k^{*}\right)^{3}$.
- X : the d. c. s. over k defined by $\boldsymbol{x}^{3}+y^{3}+z^{3}+d t^{3}=\mathbf{0}$.

Then $\mathbf{C H}_{\mathbf{0}}(\boldsymbol{X})$ is generated by the classes of rational points.

- The most essential part of the proof is to construct a rational point which is nontrivial w.r.t the Brauer-Manin pairing.
- Using some ideas due to Colliot-Thélène and Madore, we can prove the following:

Proposition

Let $\boldsymbol{E} / \mathbb{F}$ be a curve defined by $\boldsymbol{x}^{3}+\boldsymbol{y}^{\mathbf{3}}+\boldsymbol{z}^{\mathbf{3}}=\mathbf{0}$. Then there exists a point $\boldsymbol{P} \in \boldsymbol{E}(\mathbb{F})$ s.t. $\frac{\boldsymbol{x}+\boldsymbol{\zeta} \boldsymbol{y}}{\boldsymbol{x}+\boldsymbol{y}}(\boldsymbol{P})$ is non-trivial in $\mathbb{F}^{*} /\left(\mathbb{F}^{*}\right)^{3}$.

- By Hensel's lemma, we can get a lift $\widetilde{\boldsymbol{P}} \in \mathcal{E}\left(\mathcal{O}_{k}\right)$, where $\mathcal{E} / \mathcal{O}_{k}: x^{3}+y^{3}+z^{3}=0$.
- Then we see that the rational point $[\widetilde{P}: \mathbf{0}]$ is just what we need.

Proof of Proposition

- Using a curve

$$
\bar{C}:=\left\{(x+y) u^{3}-(x+\zeta y) v^{3}=0\right\} \subset \mathbb{P}_{E}^{1}
$$

where $\left[\boldsymbol{u}: \boldsymbol{v}\right.$] is the homogeneous coordinate of $\mathbb{P}_{\mathbb{F}}^{1}$, we can construct an \mathbb{F}-isogeny $\boldsymbol{\pi}:\left(\boldsymbol{E}^{\prime}, \boldsymbol{O}^{\prime}\right) \rightarrow(\boldsymbol{E}, \boldsymbol{O})$ of degree $\mathbf{3}$.

- We have $\operatorname{Ker} \pi \cong \mu_{3}$.
- $\mathbf{0} \rightarrow \boldsymbol{\mu}_{\mathbf{3}} \rightarrow \boldsymbol{E}^{\prime} \rightarrow \boldsymbol{E} \rightarrow \mathbf{0}$ (exact), $\boldsymbol{H}^{\mathbf{1}}\left(\mathbb{F}, \boldsymbol{E}^{\prime}\right)=\mathbf{0}$
\rightsquigarrow the map $\delta: E(\mathbb{F}) \rightarrow \boldsymbol{H}^{1}\left(\mathbb{F}, \boldsymbol{\mu}_{3}\right) \cong \mathbb{F}^{*} /\left(\mathbb{F}^{*}\right)^{3}$ is surjective.
- We can prove that

$$
\delta(P)= \begin{cases}1 & P=O, Q \\ \frac{x+\zeta y}{x+y}(P) & \text { otherwise }\end{cases}
$$

Theorem (Manin.)

$$
X: x^{3}+y^{3}+z^{3}+d t^{3}=0 . d \notin\left(k^{*}\right)^{3} . \zeta \in k
$$

Then,

- $\operatorname{Br}(X) / \operatorname{Br}(k) \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$.
- $\operatorname{Br}(\boldsymbol{X}) / \operatorname{Br}(\boldsymbol{k})$ is generated by the following two symbols

$$
e_{1}=\left\{d, \frac{x+\zeta y}{x+y}\right\}_{3}, \quad e_{2}=\left\{d, \frac{x+z}{x+y}\right\}_{3}
$$

- The symbol $\{\cdot, \cdot\}$ means the composite of

$$
\begin{aligned}
k(X)^{*} \otimes k(X)^{*} & \rightarrow H^{1}\left(k(X), \mu_{3}\right) \otimes H^{1}\left(k(X), \mu_{3}\right) \\
& \longrightarrow H^{2}\left(k(X), \mu_{3}^{\otimes 2}\right) \\
& \cong H^{2}\left(k(X), \mu_{3}\right)={ }_{3} \operatorname{Br}(k(X))
\end{aligned}
$$

- $\operatorname{Br}(X) \hookrightarrow \operatorname{Br}(k(X))$
- We cannot take $\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{3}}+\boldsymbol{z}^{\mathbf{3}}+\boldsymbol{d} \boldsymbol{t}^{\mathbf{3}}=\mathbf{0}$ over $\mathcal{O}_{\boldsymbol{k}}$ as \mathcal{U}, because $\boldsymbol{A}_{\boldsymbol{\eta}}$ is not regular in this case.
\rightsquigarrow We have to take another model \mathcal{U} and an appropriate choice of $\boldsymbol{\eta}$.
- We prove $\iota^{-1}\left(\operatorname{Br}\left(A_{\eta}\right)\right) \subset \operatorname{Br}_{0}(X)$ by using the same mathod as in Saito-Sato:
- Symbolic calculation is difficult.
\rightsquigarrow We have to leave an additional assumption $e>3 \ldots$

Recall:

Theorem 2. (U-.)

- \boldsymbol{k} : a \boldsymbol{p}-adic field
- $c, d \in k^{*} \backslash\left(k^{*}\right)$ with $c d, c / d \notin\left(k^{*}\right)^{3}$.
- \boldsymbol{X} : the d. c. s. over k defined by $\boldsymbol{x}^{3}+y^{3}+c z^{3}+d t^{3}=\mathbf{0}$.
(1) If $\boldsymbol{p} \neq \mathbf{3}$, we have

$$
A_{0}(X)= \begin{cases}0 & \text { if } \operatorname{ord}(c) \equiv \operatorname{ord}(d) \equiv 0 \quad \bmod 3 \\ \mathbb{Z} / 3 \mathbb{Z} & \text { otherwise }\end{cases}
$$

(2) If $\boldsymbol{p}=\mathbf{3}, \boldsymbol{\zeta} \in \boldsymbol{k}, \operatorname{ord}(\boldsymbol{c}-\mathbf{1})$ is greater then the absolute ramification index of k and $\operatorname{ord}(d) \equiv 1 \bmod 3$, then

$$
A_{0}(X) \cong \mathbb{Z} / 3 \mathbb{Z}
$$

Instead of using the above theorem of Manin, we use the following

Theorem (Colliot-Thélène-Kanevsky-Sansuc, U.)

- $X: x^{3}+y^{3}+c z^{3}+d t^{3}=0$.
- $c, d, c / d, c d \notin\left(k^{*}\right)^{3}$.

Then,

- $\operatorname{Br}(X) / \operatorname{Br}(k) \cong \mathbb{Z} / 3 \mathbb{Z}$.
- $\operatorname{Br}(\boldsymbol{X}) / \operatorname{Br}(\boldsymbol{k})$ is generated by the following symbol

$$
e_{1}=\left\{\frac{d}{c}, \frac{x+\zeta y}{x+y}\right\}_{3}
$$

Thank you for your attention!

