アブストラクト
- 野坂 武史(九州大学 数理学研究院)
TBA
TBA
- 陶器 和誠(日本大学大学院 総合基礎科学研究科 M2)
On L-space twisted torus knots
It is know that a twisted torus knot ${\it{K}}$(${\it{p}}$,${\it{q}}$;${\it{p-q}}$,${\it{n}}$)
is an L-space knot for any integer ${\it{n}}$ ${\geq}$ $-$1.
We consider if the condition“${\it{n}}$ ${\geq}$ $-$1” is best possible or not.
For instance, we show that ${\it{K}}$(7,3;4,${\it{n}}$) is an L-space knot for any integer ${\it{n}}$.
- 松土 恵理(日本大学大学院 総合基礎科学研究科 M2)
A lower bound on minimal number of colors for links
- 久野 恵理香(東京工業大学 大学院理工学研究科 D1)
Definition of finite type invariants of connected oriented
compact 3-manifolds, and Qundle homotopy (cocycle) invariants
Let $\mathcal{C}(N)$ be a curve graph of a compact connected nonorientable
surface $N$. Bestvina-Fujiwara in 2007 showed that $\mathcal{C}(N)$ is
Gromov hyperbolic and Masur-Schleimer in 2013 gave another proof. But it
was not known whether curve graphs of nonorientable surfaces are uniformly
hyperbolic or not. On the other hand, Aougab, Bowditch,
Clay-Rafi-Schleimer, and Hensel-Przytycki-Webb
independently proved that curve graphs of orientable surfaces are
uniformly hyperbolic. By applying Hensel-Przytycki-Webb's argument to the
case of nonorientable surfaces, we showed that $\mathcal{C}(N)$ is
17-hyperbolic. By a similar argument, we also showed that arc graphs of
nonorientable surfaces are 7-hyperbolic, and arc-curve graphs of
(non)orientable surfaces are 9-hyperbolic. In this talk, we give the idea
of the proofs of these results, and especially we explain the differences
between the case of nonorientable surfaces and the case of orientable
surfaces in our proofs.
- 野坂 武史(九州大学 数理学研究院)
TBA
TBA
|