更新日:2015年4月3日



アブストラクト
  • 野坂 武史(九州大学 数理学研究院)
    TBA

     TBA


  • 陶器 和誠(日本大学大学院 総合基礎科学研究科 M2)
    On L-space twisted torus knots


     It is know that a twisted torus knot ${\it{K}}$(${\it{p}}$,${\it{q}}$;${\it{p-q}}$,${\it{n}}$) is an L-space knot for any integer ${\it{n}}$ ${\geq}$ $-$1. We consider if the condition“${\it{n}}$ ${\geq}$ $-$1” is best possible or not. For instance, we show that ${\it{K}}$(7,3;4,${\it{n}}$) is an L-space knot for any integer ${\it{n}}$.


  • 松土 恵理(日本大学大学院 総合基礎科学研究科 M2)
    A lower bound on minimal number of colors for links

     


  • 久野 恵理香(東京工業大学 大学院理工学研究科 D1)
    Definition of finite type invariants of connected oriented compact 3-manifolds, and Qundle homotopy (cocycle) invariants

     Let $\mathcal{C}(N)$ be a curve graph of a compact connected nonorientable surface $N$. Bestvina-Fujiwara in 2007 showed that $\mathcal{C}(N)$ is Gromov hyperbolic and Masur-Schleimer in 2013 gave another proof. But it was not known whether curve graphs of nonorientable surfaces are uniformly hyperbolic or not. On the other hand, Aougab, Bowditch, Clay-Rafi-Schleimer, and Hensel-Przytycki-Webb independently proved that curve graphs of orientable surfaces are uniformly hyperbolic. By applying Hensel-Przytycki-Webb's argument to the case of nonorientable surfaces, we showed that $\mathcal{C}(N)$ is 17-hyperbolic. By a similar argument, we also showed that arc graphs of nonorientable surfaces are 7-hyperbolic, and arc-curve graphs of (non)orientable surfaces are 9-hyperbolic. In this talk, we give the idea of the proofs of these results, and especially we explain the differences between the case of nonorientable surfaces and the case of orientable surfaces in our proofs.


  • 野坂 武史(九州大学 数理学研究院)
    TBA

     TBA


Spring Workshop 2014メインページに戻る