ALGEBRAIC EQUATIONS AND KNOT INVARIANTS

FUMIKAZU NAGASATO

1. INTRODUCTION

This is a report on the talk which the author gave at the conference Topology of
knots IX (2006) at Nihon University, Japan.

In this report, we introduce algebraic varieties 7@ (K) (d = 1,2,3) in a complex
space CV defined for an oriented knot K in 3-sphere S3. The varieties F ¥ (K)
in fact give some viewpoints to researches for the knot theory, for example, Fox’s
coloring' from the representation theoretical viewpoint, a shortcut® to the SL(2, C)-
character variety of knot groups introduced by Culler and Shalen [CS], and so on.
The idea of the latter viewpoint is actually based on the researches of X.-S. Lin [L]
and the author [N2]. So one may think of F@ (d = 1,2,3) especially the third
variety F©&)(K) as a kind of generalization of these researches.

Now, the varieties F ¥ (K) (d = 1,2,3) are defined in the following steps. For a
braid presentation o of a knot K, we first construct finitely many polynomials on C
by using an action of the braid ¢ on the Kauffman bracket skein module (KBSM) of
a handlebody at t = —1 with trace-free condition. Then the ideal S,C(S)(O') generated
by the polynomials gives an algebraic variety F®) (o) via the Hilbert Nullstellensatz.
In fact, &) (o) turns out to be invariant under the Markov moves and thus becomes
a knot invariant. This is a desired variety F®)(K). The above process can be used
for restrictions SL? (o) and SLY (o) of the ideal SL®) (7). Therefore we can get
knot invariants F@(K) (d = 1,2,3).

The first variety (V) (K) is actually a trivial invariant. The third one F® (K) can
be considered as a variety containing a section of the SL(2, C)-character variety of
the knot group by using Bullock’s theorem (quantization of the SL(2, C)-character
variety). This view point gives relationships of the variety F® (K) with the number
of SL(2,C)-irreducible metabelian characters of the knot group (the knot determi-
nant), and moreover the maximal degree (or span) of the A-polynomial Ag(m,1)
in terms of [, which polynomial is a knot invariant introduced by Cooper, Culler,
Gillet, Long and Shalen [CCGLS]. Regarding the second variety F*)(K), the quo-
tient ring Clay, - - -, 2,]/SLP (o) (n < N) turns out to be isomorphic to the degree
0 knot contact homology which was researched by L. Ng in detail.

In this report, we show a sketch of a proof of the above statement. For more
information, please refer to [N1].

The author has been supported by JSPS Research Fellowships for Young Scientists.
ISince the topic is not the main object in this report, we omit the reason why F(® (K) and the
coloring are related. We will discuss the topic in another paper.
%j.e., a combinatorial realization of the character variety: we can calculate directly the character
variety from a diagram of the knot.
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2. ALGEBRAIC VARIETIES F@(0) (d =1,2,3)

Let 0 € B, (n > 3 for convenience) is a braid presentation of a knot K C S®. For
1 S d S 3, let CT(LI) = (C, Cy(Ld) = (C[{'Til---im}1§i1<---<im§n, QSde] (d = 2,3) (Note

®1
that ¢ c ¢i? ¢ CT(L?’).) Then for 1 < d < 3, let A = P, (@?:1Cr(z3)hj) ,

where ® is taken over C¥. We define a homomorphism ¢ : @ ¢ as -
module by
e ¢(h;) =0
L 2, lf 7:1 - ’ig
o c(hy, ® hy,) = { Ti, 1yir 2y otherwise

d C(hh ® hiQ ® his) = Sign(T)xiTu)iT@)ir@)

where 7 € §; such that i-(;) < iy and 7 € S such that i) < i) < ir3). Then
we can define twisted automorphisms

fo : Agzd) - Agzd)a Yo,A - A1(1d) - A1(1d)7
for o € B,, and a subset A C {1,---,d}.

Definition 2.1 (twisted automorphism f, of A,(Td)).

fO’i(h'j) = { fbii+1 ‘ hj B hpi’i+1(j)7 ij =1,

Pi,i+1(5) otherwise,

Foim1(hy) = .'L’ii+1~hj—hpi’i+1(j)7 ifj=i+1,
" . P i) otherwise,

where pi;11 s the permutation between i and i + 1. Then fal;l: are extended by
frims (i) == [fry 0 fry(hi), for 71, 72 € By,
fo(hiy @ - @ hi,,) = fo(hi) @ @ fo(hi,),
fo(iyi,,) :=co folhyy @~ @ hy, ).

Here we have a remark on the twisted homomorphism restricted to the subring
c{? of the coefficient ring ct¥. For any o € B, the automorphism f,, : c? — ¢
satisfies

f (l‘ ) - Lij+1 * Ljk — xpi,i+1(jk)a ifi e {]7 k}v 1+ 1 ¢ {ja k}7
ik Lpi i1 (ik)s otherwise,

) w1 gry, i1 €5 R 0 E Gk
fOFI('Tjk) = .
Lp; i11(5k) otherwise.

We consider the homomorphism ¥ : 3, — Aut(C,(f)) defined by ¥(o) := f,. Then
the composition W o of the homomorphism ¥ with the twisted inclusion ¢ : B, —

B,..1, i(co) := 07!, is actually the Magnus representation of the braid group B,
introduced in the paper [M].
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Definition 2.2 (twisted automorphism g, 4 of Aﬁ{”). For a non-empty subset

A C{1,2,3},
e(i)::{ 0 ZfzeA

1 otheruise
Then the twisted automorphism g, 4 of A s defined by
Joa(hiy @ -+ @ hi,) = [V (hi) @ - @ £ (hs,,)

ga,A('Til---im) ‘=¢Co go,A(hi1 Q- hzm)

Now, we are ready to define the ideal SL@ (o) (d = 1,2,3). First we define
SLD(g) for d = 3. Let SL® (o) be the ideal of ¥ generated by

C(fo(h'il X h22> — hil & hi2), for 1 <1 < ig < n,
0(907*(hi1 X h’l2) — hil & hi2), for (il,ig) < {1, s ,n}z,
c(folhiy, @ hiy @ hiy) — hiy @ hiy @ hyy), for 1 <y <ig <iz <mn,

¢ (Gon(hi, @ hiy @ i) — hiy @ hyy @ hyy) , for (iy,ig,4) € {1,--- ,n}3,

[T

where “«” runs through all non-empty subsets of {1,2,3}, and additionally the
triangle relations:
x?jk = TijTikTjp — x?j — x5 — x?k +4 (1<i<j<k<n),

and the hexagon relations:

1 T, Tij L1k
T123%55k — 5 det To; Toj Tk =0 (]_ <3 <] <k < n)
XT3 T3 T3k

Then let SL®(5) be the ideal of c? generated by
C(.fa(hh ® hzz) - hi1 & hi2)> for 1 S Z.1 < Z.2 S n,

C(gcn*(h'il ® hlz) - hil ® h’lz) ) for (i17i2) € {17 e 7n}2'

Moreover let SLM (o) := (0). Note that SLY(s) (d = 1,2) can be considered as
restrictions of SL® () to el (d =1,2). Now, we have the following three ideals
SLD(0) (d=1,2,3):

o SLO(0) = (c(f,(h) — h), (g Gox(h) — h), triangle, hexagon
-sc<<> c<2m853<>=<< fo(h) = 1), c(gou(h) — 1))
e SLW (o) =M nSLO (o) = (0)

Definition 2.3 (algebraic variety 7@ (o) (d = 1,2,3)). Ford = 1,2,3, we define
FD(a) by the common zeros of the ideal SLY (o) with multiplicity.

Note that the first variety F1) (o) is always C for any o € B,,.
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3. FUNDAMENTAL PROPERTIES OF THE VARIETIES F@ (o)

Theorem 3.1 (invariance under the Markov moves). For d = 1,2,3 and
o € By, the three varieties F(0,0), F¥ () and f(d)(aj_laaj) are isomorphic as
algebraic variety.

Therefore F@(K) := F@ (o) (d = 1,2,3) are knot invariants (up to isomor-
phism /coordinate change). The first variety F(K) is a trivial invariant, because
FU(K) = C. Note that the third variety F®)(K) can be computed easily by using
F@(K) by definition. In particular, the number of generators of SLY (o) (d = 2, 3)
and the triangle and the hexagon relations show the following dimensional property:

Remark 3.2 (dimensional property). For any knot K C S?,
dime (F@(K)) > dime (FP(K)) > 0.

Note that the number of irreducible components of @ (K) does not depend on
the choice of the coordinates of the varieties. The viewpoint gives knot invariants
taking its value in the non-negative integers Zs,, which is easy to handle. So we
define the following notion:

Definition 3.3 (cardinality of varieties). For an algebraic variety V' with multiplic-
ity, we denote the number of irreducible components of V' with multiplicity by N'(V),
called the cardinality of V.

Proposition 3.4. For any knot K C S3, FO(K1), FO(K*) and FD(K) are
isomorphic as algebraic variety, where K=t is K with the opposite orientation and

K* is the mirror image of K. Therefore the cardinality does not change under
reversing orientation and taking the mirror image.

We calculated the variety F? (K) by using a program running on Maple V. For
the data of the cardinality N (F®(K)), please refer to [N3].

Now, in the case of a knot K with a braid presentation of two strings, we can
determine all the variety F@ (K) (d = 1,2, 3).
Proposition 3.5 (variety 72 (¢¥) for o, € B,). For a (2,q)-torus knot T(2,q),
dime(F(T(2,q))) =0 and N(FO(T(2,9))) — 1 = 13-

More generally, we have the following properties of F®(K).
Theorem 3.6 (main result 1). For a knot K with dim(F®(K)) = 0, we have
N(FO(K)) 1> w. The equality holds for 2-bridge knots.

Let Ag(m, () be the A-polynomial of a knot K (for more information, please refer

to [CCGLS]).

Theorem 3.7 (main result 2). If a small knot K satisfies dime (FP(K)) = 0
then we have

N(FK)) =1 > maz-deg(Ax (V—1,1)) — min-deg, (A (v—1,1))
Moreover K has no meridional boundary slopes, then
N(FI(K)) =1 > maz-deg(Ax(m,1))
The inequality is the best possible for 2-bridge knots.
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The above main theorems imply that the variety F*)(K) is closely related to the
SL(2,C)-character variety of the knot group Gx (refer to Section 4). In the next
section, we give a proof of the main theorems by showing one of the relationships of
FB)(K) with the SL(2, C)-character variety.

4. RELATIONSHIPS OF F@(K) wiTH THE SL(2,C)-CHARACTER VARIETY

Let X(G) := Hom(G,SL(2,C))/ ~trace- This is called the SL(2,C)-character
variety of G. Note that the equivalent relation ~,... means that two representations
p1 and po are identified if tracep;(g) = traceps(g) for all the element g € G. Let

So(K) = X(Gg)Nmu {trace(p(u)) = 0} (p : meridian)
= A{lpl € X(Gk) | trace(p(p)) = 0}

Note that the notation Ny, means the intersection with multiplicity. The following
proposition is the key to Theorems 3.6 and 3.7:

Proposition 4.1. For any knot K C S°, we have F®) (K) D Sy(K).

By using Proposition 4.1, and the following proposition, we can immediately get
Theorems 3.6 and 3.7.

Proposition 4.2 (properties of the section Sy(K)). For a knot K satisfying

dime(So(K)) =0, N(So(K)) —1 > w. Moreover K is small, then

N(So(K)) — 1 > maz-deg(Ax (v —1,1)) — min-deg,(Ax (vV—1,1)).
Since Proposition 4.2 is a consequence of the result in [N2], we omit the proof (for
more information, please refer to [N1, N2|).

5. TOPOLOGICAL FRAMEWORK FOR F(¥(K): PROOF OF PROPOSITION 4.1

In this section, we give a sketch of a proof of Proposition 4.1 by using the topo-
logical framework of the variety F® (K). For more information, please refer to the
paper [N1].

5.1. Kauffman bracket skein module. In fact, Proposition 4.1 can be imme-
diately shown by using the topological framework of the variety F©)(K), i.e., the
Kauffman bracket skein module (KBSM for short) [P]. Let C; := C[t,t7!]. For a

compact orientable 3-manifold M, let
L(M) := Spang, {all the isotopy classes of framed links (3 ¢) in M}
The KBSM K, (M) of a 3-manifold M is defined as the quotient
Ki(M) := L,(M)/(Kauffman bracket skein relations at t)
The Kauffman bracket skein relations at ¢ are defined by the followings:

Note that at t = —1, the sign of a crossing and the framing of a link can be ignored.
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5.2. Visualization theorem (KBSM at ¢ = —1). The disjoint union gives a
multiplicative operator in K_;(M), thus K_1(M) becomes a C-algebra. In fact, the
Kauffman bracket skein relation at ¢ = —1 corresponds to the SL(2,C) Cayley-
Hamilton identity: tracep(ab) = —tracep(ab=t) + tracep(a) - tracep(b). Namely, the
Cayley-Hamilton identity can be visualized by using the Kauffman bracket skein
relations at t = —1:

ab a b alb

By using the visualization, we have the following consequence, which is a dual version
of theorem in [B, PS|. As C-module, the KBSM at ¢ = —1 can be described by

K_1(M) = C](?)/I(M), where Z(M) is an ideal of C](\i,)’). Then as a consequence of
the results in [B, PS|, we have Sol¢(Z(M)) = X (m1(M)), where Solc(Z(M)) is the
common zeros of the ideal Z(M).

5.3. Topological framework of the twisted homomorphisms f, and g,.. In
fact, the twisted homomorphisms f, and g,. (0 € B,,) can be realized by an action
of braids on the KBSM of a handlebody H,, of genus n at t = —1 with a condition
called trace-free condition. Actually, the KBSM K_;(H,, = D?x0,1]) is a C-module
generated by the following knots x;, z;; and z;;; on the n-punctured disk Dfl x {1}:

More precisely, K_1(H,) = ¢t /Z,, where Z, is an ideal of c® N ow, we decompose
the generators x;,..;, into the following simple curves h; on D2 x {1}:

Note that the projection c : AP ¢l is the recovering operation of x;,..;, from
hi’s. Then it turns out that if we add the relations x; = 0 (1 < ¢ < n), called the
trace-free condition, to the KBSM K_;(H,,), we have
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oi(hi) = Tip1hi — higa
Ui(hj) = hpn‘ﬂ(j) (] 7& Z)

it 1
In fact, we can show that for any knot K with a braid presentation o € B,, the KBSM
K_1(Ek) = e /Z(E¥) of the knot exterior Ff can be presented by the quotient of
K_1(Hy,) = CP /T, and thus T(Ex) D Z,. Since we are now assuming the trace-free
condition ; = 0, Z(Ex ) meridian=0 > Zn.z,—0 follows®. Here, we can show by using the
above observation that f,(h) —h and g,.(h) —h (h € AS’)) are elements in the ideal
Z(FK )meridian=0 Vvia the projection ¢ : B ¢ Moreover the triangle and the
hexagon relations turn out to be contained in the ideal Z, ,,—0 C Z(Ek )meridian—o-
Hence we have S£&) (0) C Z(E¥ ) meridian=0, and thus

FOK) = Sol2(SLY (0)) D Sol2™(Z(Ex) meridian—o) = So(K),

where Sol2(A) means the common zeros of A with multiplicity. This shows Propo-
sition 4.1.

6. KNOT CONTACT HOMOLOGY AND THE SECOND IDEAL

The most surprising and unexpected property is that the second ideal can be
thought of as the degree 0 abelian knot contact homology introduced by L. Ng via
the differential graded algebra in [Ngl, Ng2]. T would like to thank Professor X.-S.
Lin for letting me know the papers.

6.1. Differential graded algebra and knot contact homology. In [Ngl|, Ng
constructed a graded algebra (DGA) by using the Magnus representation of braids.
(For the geometric background of DGA, refer to Section 3 of [Ngl].)

Let A,, be the tensor algebra on n(n — 1) generators a;; (1 < i,j < n, i # j).
(Note that there is no relationships between A,, and A defined in Section 2.) Then
we denote the group of automorphisms of A,, by Aut(A,).

For each generator oy, of B, define the homomorphism ¢,, € Aut(.A,) by

(ki P Qg1 — Qpy1k D Ak, TF K E+ ]
i, — Qi1 — Qi @ Qg 1 F K k41
Apy1i > Qg i £k k+1
bo, = Qi1 > Qg i #kk+1
Agk+1 —  Qkt1k
Ap41k  —  Qkk41
\ aij g CLZ'j, Z,j#k,]{?"—l

In fact, the map ¢ : B, — Aut(A,) defined by ¢(oy) = ¢,, turns out to be a
homomorphism. We consider the inclusion i : B,, — B,.1. This can be considered
as just adding (n + 1)-st strand which does not intersect with the other n strands.
Then a;,,, and a,1; are denoted by a;, and a,;, respectively.

3Here Zy—o means the ideal Z with the condition y = 0.
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Now we consider an extension of the automorphism ¢,
¢ = oi: By — Bui — Aut(A,).

By the definition of ¢,, we can show that for a braid ¢ € B,, and an indeterminate
Qix (r€SP. i), T (aix) (vesp. ¢ (ay;)) is a linear combinations of aj. (resp. a.;).

Definition 6.1. For a braid o € B, the (n x n)-matrices ®L(A) and ®E(A) are
defined by
$5 (ai) =D (PE(A))ijaje, 65" (au) =Y (PH(A))ija..
=1 j=1

Definition 6.2 (degree 0 knot contact homology (Proposition 4.2 in [Ngl])). For
a knot K in 3-sphere S3, the degree 0 contact homology of K, written HCy(K), is
the quotient algebra A, )Z,, where o is a braid presentation of K, I, is the two-
sided ideal of A, generated by the entries of two matrices (®L(A) — F) - A and
A (PE(A) - E), A= (a;) and E := diag(1,--- ,1).

Then abelianize the above framework by taking the quotient by a;; — a;; and
a;; ® ag — ag ® a;; (i.e., the tensor becomes the usual commutative multiplication
and A,, becomes a polynomial ring over Z or C). We denote the abelianized algebra

by A2,

Definition 6.3 (degree 0 abelian knot contact homology). For a knot K in real
Euclidean space R3 (or 3-sphere S?), the degree 0 abelian contact homology, written
CHEM(K), is defined by

CH"(K) = AP /T5",
where o is a braid presentation of K, T2 is the ideal of A, generated by the entries
of the two matrices (PPL(A) — E) - A and A - (PR(A) — E), A := (a;;) and
E :=diag(1,---,1).

Note that the matirx ®2»%(A) is in fact the transpose of ®3*L(A). It turns out

that the degree 0 (abelian) contact homology of K does not depend on the choice
of braid presentations of K (see Theorem 4.10 in [Ngl]). So CHy(K) and CHZ" are
well-defined and thus invariants of knots.

6.2. Efficient description of the ideal S£® (o). We recall the ideal SL? (o)
defined in Section 2. For a braid presentation o € B> of a knot K, SL® (o) is the

ideal of C?) generated by
Jo(Tiyiy) — Tiyiy, for 1 <y <ig <m,
€0 Gou(hiy @ hiy) — Tiy4y, for (iy,iz) € {1, ,n}>
Actually, it turns out that
Jo(Tiriy) — Tiyiy
for 1 <147 < iy < n can be described by
€0 Gou(hiy @ hiy) — Tiy4y, for (iy,iz) € {1, ,n}>

Namely, the first type of generators can be omitted. To show this, we describe the
automorphism g, . by the matrix presentation as the similar fashion to the O-degree
abelian knot contact homology. By definition, f,(h;) can be described by a linear
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combination of h;’s over c{?. Then we define two (n x n)-matrices G% and G in
Mq(C7) by

Gos(hi @ i) = (0(hi) @ hy) = 377 (GE)izh; @ Dy,
ga,i(hi X hk) = (hi X O'(hk)) = Zn (Gf)jkhi & hj.

J=1

Note that G is the transpose of GL. We next consider the automorphism f,. By
definition, we have

fa<$ij> =cCo fcr<hi ® hj) = C<f0<hi> @ fo(hj))'
Here we focus on f,(h;) ® fo(h;).

n n

folhi) © folhy) =Y (GE)hi @ o(hy) = (GR)a(GH)yhi ® hu.

k=1 k=1,l=1
Hence we have the following matrix presentation of f,(z;;):
(folzy)) = G5 - X - G,

where the matrix X := (z;;). Then we can transform the matrix (f,(x;;)) — E like
this:

(foley) —E = GZ-X-GI—E
= (GE-F)- X -GF+ X - (GF-E).

Note that the entries of the matrices (GL—F)-X-G® and X -(GE—FE) are in the ideal
generated by the entries of the matrices (GZ — E)- X and X - (GE — E). Therefore

the ideal SL® () can be considered as the ideal generated by the entries of the two
matrices (GL — E)- X and X - (GE — E), where X := (z;;) and F := diag(1,---,1).

6.3. The ideals SL? (o) and Z?P. We take a closer look at the description of the
ideal Z2* via the (n x n)-matrices ®2L(A) and ®2>E(A) for A2P:

n n

05 a0) = D (OPH Ay, 65 (@) = 3 (B(A) sy,

j=1 j=1

Then by definition, CHZ(K) = A /T2 where o is a braid presentation of K.

Here is a little digression. Recall the ideal Z2" is generated by the entries of the
two matrices ®2F(A)- A and A-®2»F(A), where A = (a;;). Here note that we made
the matrices ®2L(A) and ®2F(A) by using the linear description of the action of
the braid o to a;. and a.;. However, the matrix which ®*»*(A) and ®2»%(A) are
multiplied by is A = (a;;). This operation can be thought of as the projection
c: AP — .

Now we can consider a map

T:AD/SLP(0) — AP /T3,

defined by T'(z;;) := —a;;, T(1) :== 1. The map 7" turns out to be a homomorphism
as C-algebra. Moreover T is clearly a bijection. Therefore T is an isomorphism.
Then we have the following conclusion:
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Theorem 6.4 (main result 3). For any knot K in 3-sphere S®, the quotient

polynomial ring CY(LQ)/Sﬁ(m(U) is isomorphic to the degree 0 abelian knot contact
homology CHE*(K), where o is a braid presentation of K.

7. REMARKS

The main results on the varieties F(¥(K) stated in this report seem to be a
piece of the properties which F@(K) has. It is very interesting to look into the
relationship of the variety F®)(K) with the Casson-Lin invariant/knot signature
[L] which is a model (but not exactly) of the variety. It is also interesting to know
whether or not the variety F®) (K) coincides with the section Sy(K) for any knots
(refer to Proposition 4.1). This viewpoint will give an answer to the question: is the
variety F®)(K) a real combinatorial realization of the section Sy(K)?
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