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1. Introduction

This is a report on the talk which the author gave at the conference Topology of
knots IX (2006) at Nihon University, Japan.

In this report, we introduce algebraic varieties F (d)(K) (d = 1, 2, 3) in a complex
space CN defined for an oriented knot K in 3-sphere S3. The varieties F (d)(K)
in fact give some viewpoints to researches for the knot theory, for example, Fox’s
coloring1 from the representation theoretical viewpoint, a shortcut2 to the SL(2, C)-
character variety of knot groups introduced by Culler and Shalen [CS], and so on.
The idea of the latter viewpoint is actually based on the researches of X.-S. Lin [L]
and the author [N2]. So one may think of F (d) (d = 1, 2, 3) especially the third
variety F (3)(K) as a kind of generalization of these researches.

Now, the varieties F (d)(K) (d = 1, 2, 3) are defined in the following steps. For a
braid presentation σ of a knot K, we first construct finitely many polynomials on CN

by using an action of the braid σ on the Kauffman bracket skein module (KBSM) of

a handlebody at t = −1 with trace-free condition. Then the ideal SL(3)(σ) generated
by the polynomials gives an algebraic variety F (3)(σ) via the Hilbert Nullstellensatz.
In fact, F (3)(σ) turns out to be invariant under the Markov moves and thus becomes
a knot invariant. This is a desired variety F (3)(K). The above process can be used

for restrictions SL(2)(σ) and SL(1)(σ) of the ideal SL(3)(σ). Therefore we can get
knot invariants F (d)(K) (d = 1, 2, 3).

The first variety F (1)(K) is actually a trivial invariant. The third one F (3)(K) can
be considered as a variety containing a section of the SL(2, C)-character variety of
the knot group by using Bullock’s theorem (quantization of the SL(2, C)-character
variety). This view point gives relationships of the variety F (3)(K) with the number
of SL(2, C)-irreducible metabelian characters of the knot group (the knot determi-
nant), and moreover the maximal degree (or span) of the A-polynomial AK(m, l)
in terms of l, which polynomial is a knot invariant introduced by Cooper, Culler,
Gillet, Long and Shalen [CCGLS]. Regarding the second variety F (2)(K), the quo-

tient ring C[x1, · · · , xn]/SL(2)(σ) (n ≤ N) turns out to be isomorphic to the degree
0 knot contact homology which was researched by L. Ng in detail.

In this report, we show a sketch of a proof of the above statement. For more
information, please refer to [N1].

The author has been supported by JSPS Research Fellowships for Young Scientists.
1Since the topic is not the main object in this report, we omit the reason why F (d)(K) and the

coloring are related. We will discuss the topic in another paper.
2i.e., a combinatorial realization of the character variety: we can calculate directly the character

variety from a diagram of the knot.
1
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2. Algebraic varieties F (d)(σ) (d = 1, 2, 3)

Let σ ∈ Bn (n ≥ 3 for convenience) is a braid presentation of a knot K ⊂ S3. For

1 ≤ d ≤ 3, let C(1)
n := C, C(d)

n := C[{xi1···im}1≤i1<···<im≤n, 2≤m≤d] (d = 2, 3). (Note

that C(1)
n ⊂ C(2)

n ⊂ C(3)
n .) Then for 1 ≤ d ≤ 3, let A(d)

n :=
⊕d

i=1

(⊕n
j=1 C(3)

n hj

)⊗i

,

where ⊗ is taken over C(3)
n . We define a homomorphism c : A(d)

n → C(3)
n as C(3)

n -
module by

• c(hi) := 0

• c(hi1 ⊗ hi2) :=

{
2, if i1 = i2

xiτ(1)iτ(2)
, otherwise

• c(hi1 ⊗ hi2 ⊗ hi3) := sign(τ)xiτ(1)iτ(2)iτ(3)

where τ ∈ S2 such that iτ(1) < iτ(2) and τ ∈ S3 such that iτ(1) ≤ iτ(2) ≤ iτ(3). Then
we can define twisted automorphisms

fσ : A(d)
n → A(d)

n , gσ,A : A(d)
n → A(d)

n ,

for σ ∈ Bn and a subset A ⊂ {1, · · · , d}.
Definition 2.1 (twisted automorphism fσ of A(d)

n ).

fσi
(hj) :=

{
xii+1 · hj − hpi,i+1(j), if j = i,
hpi,i+1(j), otherwise,

fσi
−1(hj) :=

{
xii+1 · hj − hpi,i+1(j), if j = i + 1,
hpi,i+1(j), otherwise,

where pii+1 is the permutation between i and i + 1. Then fσ±
i

are extended by

fτ1·τ2(hi) := fτ1 ◦ fτ2(hi), for τ1, τ2 ∈ Bn,

fσ(hi1 ⊗ · · · ⊗ him) := fσ(hi1) ⊗ · · · ⊗ fσ(him),

fσ(xi1···im) := c ◦ fσ(hi1 ⊗ · · · ⊗ him).

Here we have a remark on the twisted homomorphism restricted to the subring

C(2)
n of the coefficient ring C(3)

n . For any σ ∈ Bn, the automorphism fσ : C(2)
n → C(2)

n

satisfies

fσi
(xjk) :=

{
xii+1 · xjk − xpi,i+1(jk), if i ∈ {j, k}, i + 1 /∈ {j, k},
xpi,i+1(jk), otherwise,

fσi
−1(xjk) :=

{
xii+1 · xjk − xpi,i+1(jk), if i + 1 ∈ {j, k}, i /∈ {j, k},
xpi,i+1(jk), otherwise.

We consider the homomorphism Ψ : Bn → Aut(C(2)
n ) defined by Ψ(σ) := fσ. Then

the composition Ψ ◦ ĩ of the homomorphism Ψ with the twisted inclusion ĩ : Bn →
Bn+1, ĩ(σ) := σ−1, is actually the Magnus representation of the braid group Bn

introduced in the paper [M].
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Definition 2.2 (twisted automorphism gσ,A of A(d)
n ). For a non-empty subset

A ⊂ {1, 2, 3},
ε(i) :=

{
0 if i ∈ A
1 otherwise

Then the twisted automorphism gσ,A of A(d)
n is defined by

gσ,A(hi1 ⊗ · · · ⊗ him) := f ε(1)
σ (hi1) ⊗ · · · ⊗ f ε(m)

σ (him)

gσ,A(xi1···im) := c ◦ gσ,A(hi1 ⊗ · · · ⊗ him)

Now, we are ready to define the ideal SL(d)(σ) (d = 1, 2, 3). First we define

SL(d)(σ) for d = 3. Let SL(3)(σ) be the ideal of C(3)
n generated by

c (fσ(hi1 ⊗ hi2) − hi1 ⊗ hi2) , for 1 ≤ i1 < i2 ≤ n,

c (gσ,∗(hi1 ⊗ hi2) − hi1 ⊗ hi2) , for (i1, i2) ∈ {1, · · · , n}2,

c (fσ(hi1 ⊗ hi2 ⊗ hi3) − hi1 ⊗ hi2 ⊗ hi3) , for 1 ≤ i1 < i2 < i3 ≤ n,

c (gσ,∗(hi1 ⊗ hi2 ⊗ hi3) − hi1 ⊗ hi2 ⊗ hi3) , for (i1, i2, i3) ∈ {1, · · · , n}3,

where “∗” runs through all non-empty subsets of {1, 2, 3}, and additionally the
triangle relations:

x2
ijk = xijxikxjk − x2

ij − x2
ik − x2

jk + 4 (1 ≤ i < j < k ≤ n),

and the hexagon relations:

x123xijk − 1

2
det

⎡
⎣ x1i x1j x1k

x2i x2j x2k

x3i x3j x3k

⎤
⎦ = 0 (1 ≤ i < j < k ≤ n).

Then let SL(2)(σ) be the ideal of C(2)
n generated by

c (fσ(hi1 ⊗ hi2) − hi1 ⊗ hi2) , for 1 ≤ i1 < i2 ≤ n,

c (gσ,∗(hi1 ⊗ hi2) − hi1 ⊗ hi2) , for (i1, i2) ∈ {1, · · · , n}2.

Moreover let SL(1)(σ) := 〈0〉. Note that SL(d)(σ) (d = 1, 2) can be considered as

restrictions of SL(3)(σ) to C(d)
n (d = 1, 2). Now, we have the following three ideals

SL(d)(σ) (d = 1, 2, 3):

• SL(3)(σ) := 〈c(fσ(h) − h), c(gσ,∗(h) − h), triangle, hexagon
• SL(2)(σ) := C(2)

n ∩ SL(3)(σ) = 〈c(fσ(h) − h), c(gσ,∗(h) − h)〉
• SL(1)(σ) := C(1)

n ∩ SL(3)(σ) = 〈0〉
Definition 2.3 (algebraic variety F (d)(σ) (d = 1, 2, 3)). For d = 1, 2, 3, we define

F (d)(σ) by the common zeros of the ideal SL(d)(σ) with multiplicity.

Note that the first variety F (1)(σ) is always C for any σ ∈ Bn.
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3. Fundamental properties of the varieties F (d)(σ)

Theorem 3.1 (invariance under the Markov moves). For d = 1, 2, 3 and
σ ∈ Bn, the three varieties F (d)(σnσ), F (d)(σ) and F (d)(σ−1

j σσj) are isomorphic as
algebraic variety.

Therefore F (d)(K) := F (d)(σ) (d = 1, 2, 3) are knot invariants (up to isomor-
phism/coordinate change). The first variety F (1)(K) is a trivial invariant, because
F (1)(K) = C. Note that the third variety F (3)(K) can be computed easily by using

F (2)(K) by definition. In particular, the number of generators of SL(d)(σ) (d = 2, 3)
and the triangle and the hexagon relations show the following dimensional property:

Remark 3.2 (dimensional property). For any knot K ⊂ S3,

dim�

(F (2)(K)
) ≥ dim�

(F (3)(K)
) ≥ 0.

Note that the number of irreducible components of F (d)(K) does not depend on
the choice of the coordinates of the varieties. The viewpoint gives knot invariants
taking its value in the non-negative integers Z≥0, which is easy to handle. So we
define the following notion:

Definition 3.3 (cardinality of varieties). For an algebraic variety V with multiplic-
ity, we denote the number of irreducible components of V with multiplicity by N (V ),
called the cardinality of V .

Proposition 3.4. For any knot K ⊂ S3, F (d)(K−1), F (d)(K∗) and F (d)(K) are
isomorphic as algebraic variety, where K−1 is K with the opposite orientation and
K∗ is the mirror image of K. Therefore the cardinality does not change under
reversing orientation and taking the mirror image.

We calculated the variety F (2)(K) by using a program running on Maple V. For
the data of the cardinality N (F (2)(K)), please refer to [N3].

Now, in the case of a knot K with a braid presentation of two strings, we can
determine all the variety F (d)(K) (d = 1, 2, 3).

Proposition 3.5 (variety F (2)(σq
1) for σ1 ∈ B2). For a (2, q)-torus knot T (2, q),

dim� (F (2)(T (2, q))) = 0 and N (F (2)(T (2, q)))− 1 = q−1
2

.

More generally, we have the following properties of F (3)(K).

Theorem 3.6 (main result 1). For a knot K with dim(F (2)(K)) = 0, we have

N (F (3)(K)) − 1 ≥ |∆K(−1)|−1
2

. The equality holds for 2-bridge knots.

Let AK(m, l) be the A-polynomial of a knot K (for more information, please refer
to [CCGLS]).

Theorem 3.7 (main result 2). If a small knot K satisfies dim�

(F (2)(K)
)

= 0
then we have

N (F (3)(K)) − 1 ≥ max-degl(AK(
√−1, l)) − min-degl(AK(

√−1, l))

Moreover K has no meridional boundary slopes, then

N (F (3)(K)) − 1 ≥ max-degl(AK(m, l))

The inequality is the best possible for 2-bridge knots.
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The above main theorems imply that the variety F (3)(K) is closely related to the
SL(2, C)-character variety of the knot group GK (refer to Section 4). In the next
section, we give a proof of the main theorems by showing one of the relationships of
F (3)(K) with the SL(2, C)-character variety.

4. Relationships of F (d)(K) with the SL(2, C)-character variety

Let X(G) := Hom(G, SL(2, C))/ ∼trace. This is called the SL(2, C)-character
variety of G. Note that the equivalent relation ∼trace means that two representations
ρ1 and ρ2 are identified if traceρ1(g) = traceρ2(g) for all the element g ∈ G. Let

S0(K) := X(GK) ∩mul {trace(ρ(µ)) = 0} (µ : meridian)

= {[ρ] ∈ X(GK) | trace(ρ(µ)) = 0}
Note that the notation ∩mul means the intersection with multiplicity. The following
proposition is the key to Theorems 3.6 and 3.7:

Proposition 4.1. For any knot K ⊂ S3, we have F (3)(K) ⊃ S0(K).

By using Proposition 4.1, and the following proposition, we can immediately get
Theorems 3.6 and 3.7.

Proposition 4.2 (properties of the section S0(K)). For a knot K satisfying

dim� (S0(K)) = 0, N (S0(K)) − 1 ≥ |∆K(−1)|−1
2

. Moreover K is small, then

N (S0(K)) − 1 ≥ max-degl(AK(
√−1, l)) − min-degl(AK(

√−1, l)).

Since Proposition 4.2 is a consequence of the result in [N2], we omit the proof (for
more information, please refer to [N1, N2]).

5. Topological framework for F (d)(K): proof of Proposition 4.1

In this section, we give a sketch of a proof of Proposition 4.1 by using the topo-
logical framework of the variety F (3)(K). For more information, please refer to the
paper [N1].

5.1. Kauffman bracket skein module. In fact, Proposition 4.1 can be imme-
diately shown by using the topological framework of the variety F (3)(K), i.e., the
Kauffman bracket skein module (KBSM for short) [P]. Let Ct := C[t, t−1]. For a
compact orientable 3-manifold M , let

Lt(M) := Span� t
{all the isotopy classes of framed links (� φ) in M}

The KBSM Kt(M) of a 3-manifold M is defined as the quotient

Kt(M) := Lt(M)/〈Kauffman bracket skein relations at t〉
The Kauffman bracket skein relations at t are defined by the followings:

− t − t−1

L � − (−t2 − t−2)L, for any framed link L in M

Note that at t = −1, the sign of a crossing and the framing of a link can be ignored.
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5.2. Visualization theorem (KBSM at t = −1). The disjoint union gives a
multiplicative operator in K−1(M), thus K−1(M) becomes a C-algebra. In fact, the
Kauffman bracket skein relation at t = −1 corresponds to the SL(2, C) Cayley-
Hamilton identity: traceρ(ab) = −traceρ(ab−1) + traceρ(a) · traceρ(b). Namely, the
Cayley-Hamilton identity can be visualized by using the Kauffman bracket skein
relations at t = −1:

( ( (((

(

(
(− −=

−traceρ

−traceρ

−traceρ−traceρ

aaa bb b−1 �
By using the visualization, we have the following consequence, which is a dual version
of theorem in [B, PS]. As C-module, the KBSM at t = −1 can be described by

K−1(M) = C(3)
N /I(M), where I(M) is an ideal of C(3)

N . Then as a consequence of
the results in [B, PS], we have Sol� (I(M)) = X(π1(M)), where Sol� (I(M)) is the
common zeros of the ideal I(M).

5.3. Topological framework of the twisted homomorphisms fσ and gσ,∗. In
fact, the twisted homomorphisms fσ and gσ,∗ (σ ∈ Bn) can be realized by an action
of braids on the KBSM of a handlebody Hn of genus n at t = −1 with a condition
called trace-free condition. Actually, the KBSM K−1(Hn = D2

n×[0, 1]) is a C-module
generated by the following knots xi, xij and xijk on the n-punctured disk D2

n ×{1}:

xi :=
...

...

...

...

1
2

3 n − 2

n − 1
n

i

j
k

, xij :=
...

...

...

...

1
2

3 n − 2

n − 1
n

i

j
k

, xijk :=
...

...

...

...
1

2

3 n − 2

n − 1
n

i

j
k

More precisely, K−1(Hn) = C(3)
n /In, where In is an ideal of C(3)

n . Now, we decompose
the generators xi1···ik into the following simple curves hi on D2

n × {1}:

... ...

1

2

i j

n

hj

Note that the projection c : A(3)
n → C(3)

n is the recovering operation of xi1···ik from
hi’s. Then it turns out that if we add the relations xi = 0 (1 ≤ i ≤ n), called the
trace-free condition, to the KBSM K−1(Hn), we have

== −
h2 h3

h2

σ2(h2)

x23
xi=0
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...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1
2

n

i

i + 1

= −
σi(hi) = xii+1hi − hi+1

σi(hj) = hpii+1(j) (j �= i)

In fact, we can show that for any knot K with a braid presentation σ ∈ Bn the KBSM

K−1(EK) = C(3)
n /I(EK) of the knot exterior EK can be presented by the quotient of

K−1(Hn) = C(3)
n /In, and thus I(EK) ⊃ In. Since we are now assuming the trace-free

condition xi = 0, I(EK)meridian=0 ⊃ In,xi=0 follows3. Here, we can show by using the

above observation that fσ(h)−h and gσ,∗(h)−h (h ∈ A(3)
n ) are elements in the ideal

I(EK)meridian=0 via the projection c : A(3)
n → C(3)

n . Moreover the triangle and the
hexagon relations turn out to be contained in the ideal In,xi=0 ⊂ I(EK)meridian=0.

Hence we have SL(3)(σ) ⊂ I(EK)meridian=0, and thus

F (3)(K) = Solmul
�

(SL(3)(σ)) ⊃ Solmul
�

(I(EK)meridian=0) = S0(K),

where Solmul
�

(A) means the common zeros of A with multiplicity. This shows Propo-
sition 4.1.

6. Knot contact homology and the second ideal

The most surprising and unexpected property is that the second ideal can be
thought of as the degree 0 abelian knot contact homology introduced by L. Ng via
the differential graded algebra in [Ng1, Ng2]. I would like to thank Professor X.-S.
Lin for letting me know the papers.

6.1. Differential graded algebra and knot contact homology. In [Ng1], Ng
constructed a graded algebra (DGA) by using the Magnus representation of braids.
(For the geometric background of DGA, refer to Section 3 of [Ng1].)

Let An be the tensor algebra on n(n − 1) generators aij (1 ≤ i, j ≤ n, i �= j).

(Note that there is no relationships between An and A(d)
n defined in Section 2.) Then

we denote the group of automorphisms of An by Aut(An).
For each generator σk of Bn, define the homomorphism φσk

∈ Aut(An) by

φσk
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aki �→ −ak+1i − ak+1k ⊗ aki, i �= k, k + 1
aik �→ −aik+1 − aik ⊗ akk+1, i �= k, k + 1

ak+1i �→ aki, i �= k, k + 1
aik+1 �→ aik, i �= k, k + 1
akk+1 �→ ak+1k

ak+1k �→ akk+1

aij �→ aij , i, j �= k, k + 1

In fact, the map φ : Bn → Aut(An) defined by φ(σk) := φσk
turns out to be a

homomorphism. We consider the inclusion i : Bn → Bn+1. This can be considered
as just adding (n + 1)-st strand which does not intersect with the other n strands.
Then ain+1 and an+1i are denoted by ai∗ and a∗i, respectively.

3Here Iy=0 means the ideal I with the condition y = 0.
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Now we consider an extension of the automorphism φ,

φext := φ ◦ i : Bn → Bn+1 → Aut(An).

By the definition of φσ, we can show that for a braid σ ∈ Bn and an indeterminate
ai∗ (resp. a∗i), φext

σ (ai∗) (resp. φext
σ (a∗i)) is a linear combinations of aj∗ (resp. a∗j).

Definition 6.1. For a braid σ ∈ Bn, the (n × n)-matrices ΦL
σ (A) and ΦR

σ (A) are
defined by

φext
σ (ai∗) =

n∑
j=1

(ΦL
σ (A))ijaj∗, φext

σ (a∗i) =
n∑

j=1

(ΦR
σ (A))ija∗j .

Definition 6.2 (degree 0 knot contact homology (Proposition 4.2 in [Ng1])). For
a knot K in 3-sphere S3, the degree 0 contact homology of K, written HC0(K), is
the quotient algebra An/Iσ, where σ is a braid presentation of K, Iσ is the two-
sided ideal of An generated by the entries of two matrices (ΦL

σ (A) − E) · A and
A · (ΦR

σ (A) − E), A := (aij) and E := diag(1, · · · , 1).

Then abelianize the above framework by taking the quotient by aij − aij and
aij ⊗ akl − akl ⊗ aij (i.e., the tensor becomes the usual commutative multiplication
and An becomes a polynomial ring over Z or C). We denote the abelianized algebra
by Aab

n .

Definition 6.3 (degree 0 abelian knot contact homology). For a knot K in real
Euclidean space R3 (or 3-sphere S3), the degree 0 abelian contact homology, written
CHab

0 (K), is defined by
CHab

0 (K) := Aab
n /Iab

σ ,

where σ is a braid presentation of K, Iab
σ is the ideal of An generated by the entries

of the two matrices (Φab,L
σ (A) − E) · A and A · (Φab,R

σ (A) − E), A := (aij) and
E := diag(1, · · · , 1).

Note that the matirx Φab,R
σ (A) is in fact the transpose of Φab,L

σ (A). It turns out
that the degree 0 (abelian) contact homology of K does not depend on the choice
of braid presentations of K (see Theorem 4.10 in [Ng1]). So CH0(K) and CHab

0 are
well-defined and thus invariants of knots.

6.2. Efficient description of the ideal SL(2)(σ). We recall the ideal SL(2)(σ)
defined in Section 2. For a braid presentation σ ∈ Bn≥2 of a knot K, SL(2)(σ) is the

ideal of C(2)
n generated by

fσ(xi1i2) − xi1i2 , for 1 ≤ i1 < i2 ≤ n,

c ◦ gσ,∗(hi1 ⊗ hi2) − xi1i2 , for (i1, i2) ∈ {1, · · · , n}2.

Actually, it turns out that
fσ(xi1i2) − xi1i2

for 1 ≤ i1 < i2 ≤ n can be described by

c ◦ gσ,∗(hi1 ⊗ hi2) − xi1i2 , for (i1, i2) ∈ {1, · · · , n}2.

Namely, the first type of generators can be omitted. To show this, we describe the
automorphism gσ,∗ by the matrix presentation as the similar fashion to the 0-degree
abelian knot contact homology. By definition, fσ(hi) can be described by a linear
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combination of hj ’s over C(2)
n . Then we define two (n × n)-matrices GL

σ and GR
σ in

Mn(C(2)
n ) by

gσ,k(hi ⊗ hk) = (σ(hi) ⊗ hk) =
∑n

j=1(G
L
σ )ijhj ⊗ hk,

gσ,i(hi ⊗ hk) = (hi ⊗ σ(hk)) =
∑n

j=1(G
R
σ )jkhi ⊗ hj.

Note that GR
σ is the transpose of GL

σ . We next consider the automorphism fσ. By
definition, we have

fσ(xij) = c ◦ fσ(hi ⊗ hj) = c(fσ(hi) ⊗ fσ(hj)).

Here we focus on fσ(hi) ⊗ fσ(hj).

fσ(hi) ⊗ fσ(hj) =

n∑
k=1

(GL
σ )ikhk ⊗ σ(hj) =

n∑
k=1,l=1

(GL
σ )ik(G

R
σ )ljhk ⊗ hl.

Hence we have the following matrix presentation of fσ(xij):

(fσ(xij)) = GL
σ · X · GR

σ ,

where the matrix X := (xij). Then we can transform the matrix (fσ(xij)) − E like
this:

(fσ(xij)) − E = GL
σ · X · GR

σ − E

= (GL
σ − E) · X · GR

σ + X · (GR
σ − E).

Note that the entries of the matrices (GL
σ−E)·X ·GR

σ and X ·(GR
σ −E) are in the ideal

generated by the entries of the matrices (GL
σ −E) ·X and X · (GR

σ −E). Therefore

the ideal SL(2)(σ) can be considered as the ideal generated by the entries of the two
matrices (GL

σ −E) ·X and X · (GR
σ −E), where X := (xij) and E := diag(1, · · · , 1).

6.3. The ideals SL(2)(σ) and Iab
σ . We take a closer look at the description of the

ideal Iab
σ via the (n × n)-matrices Φab,L

σ (A) and Φab,R
σ (A) for Aab

n :

φext
σ (ai∗) =

n∑
j=1

(Φab,L
σ (A))ijaj∗, φext

σ (a∗i) =

n∑
j=1

(Φab,R
σ (A))jia∗j .

Then by definition, CHab
0 (K) = Aab

n /Iab
σ , where σ is a braid presentation of K.

Here is a little digression. Recall the ideal Iab
σ is generated by the entries of the

two matrices Φab,L
σ (A) ·A and A ·Φab,R

σ (A), where A = (aij). Here note that we made
the matrices Φab,L

σ (A) and Φab,R
σ (A) by using the linear description of the action of

the braid σ to ai∗ and a∗j . However, the matrix which Φab,L
σ (A) and Φab,R

σ (A) are
multiplied by is A = (aij). This operation can be thought of as the projection

c : A(2)
n → C(2)

n .
Now we can consider a map

T : A(2)
n /SL(2)(σ) → Aab

n /Iab
σ ,

defined by T (xij) := −aij , T (1) := 1. The map T turns out to be a homomorphism
as C-algebra. Moreover T is clearly a bijection. Therefore T is an isomorphism.
Then we have the following conclusion:
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Theorem 6.4 (main result 3). For any knot K in 3-sphere S3, the quotient

polynomial ring C(2)
n /SL(2)(σ) is isomorphic to the degree 0 abelian knot contact

homology CHab
0 (K), where σ is a braid presentation of K.

7. Remarks

The main results on the varieties F (d)(K) stated in this report seem to be a
piece of the properties which F (d)(K) has. It is very interesting to look into the
relationship of the variety F (3)(K) with the Casson-Lin invariant/knot signature
[L] which is a model (but not exactly) of the variety. It is also interesting to know
whether or not the variety F (3)(K) coincides with the section S0(K) for any knots
(refer to Proposition 4.1). This viewpoint will give an answer to the question: is the
variety F (3)(K) a real combinatorial realization of the section S0(K)?
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