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THE MINIMAL RELATION IN THE KAUFFMAN BRACKET

SKEIN MODULE OF THE m-TWIST KNOT

RǍZVAN GELCA AND FUMIKAZU NAGASATO

Abstract. In this paper, we will give an underlying relation in the Kauffman
bracket skein module of the m-twist knot exterior, called “the minimal relation”.
Actually, this relation comes from a handle sliding of a knot in a handlebody of
genus two along the 2-handle, when decomposing the m-twist knot exterior into
a handlebody of genus two and a 2-handle. In the final section, we will give an
application of the minimal relation to the SL(2, C)-character variety of the m-twist
knot.

1. Background and motivation

In 1998, Frohman, Gelca and LoFaro introduced a non-commutative knot invari-
ant, called the A-ideal, which is a left ideal of the non-commutative ring Ct[l, m]
with the relation lm = t2ml ([FGL]). The A-ideal gives us another view point of the
A-polynomial ([CCGLS]) and the colored Jones polynomial. We are now interested
in “non-triviality” of the A-ideal. Here consider the map πt

πt : Kt(T
2 × I)→ Kt(EK)

induced by a “canonical” gluing of the cylinder over a torus to the knot exterior along
their boundaries T 2×{1} and ∂EK . Actually, the A-ideal is associated with Ker(πt),
so we focus on Ker(πt) instead of the A-ideal from now on. If Ker(πt) of a knot K
is non-trivial, that is, Ker(πt) has a non-zero element, then we can get a recursion
relation of the colored Jones polynomial Jn(K) in terms of the dimension n of the
sl(2, C)-representation ([G2]). This recursion relation has some information of the
SL(2, C)-representations of the knot group. (Actually, we can derive information of
the A-polynomial from this recursion relation.) Our interest is now headed toward
the colored Jones polynomial given by a recursion relation coming from Ker(πt).
Let us first set the following notations:

(1) K: a knot in S3,
(2) EK := S3 −N(K), where N(K) is an open tubular neighborhood of K,
(3) R(π1(EK)) := HomC(π1(EK), SL(2, C)),
(4) X(π1(EK)) := {character χρ of ρ ∈ R(π1(EK))},
(5) tγ : X(π1(EK))→ C, tγ(χρ) := Trace(ρ(γ)), for γ ∈ π1(EK),
(6) χ(π1(EK)) := C[tγ1

, tγ2
, ..., tγk

], (γi ∈ π1(EK)),
(7) Kt(EK): the Kauffman bracket skein module of EK .

Here R(π1(EK)) and X(π1(EK)) in (3), (4) are called the SL(2, C)-representation
variety and the SL(2, C)-character variety of the knot group π1(EK) respectively.
(Please refer to [CS] in detail.) χ(π1(EK)) in (6) can be considered as the dual
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space of X(π1(EK)), and k depends on the number of generators of the knot group
π1(EK).

The Kauffman bracket skein module (KBSM for short) in (7) is defined in the
beginning of the next section. Now under the above setting, roughly speaking, there
exist the following relationships.

K−1(EK) = χ(π1(EK)) ←→ X(π1(EK))

↑ projection (t = −1) ↑
Kt(EK) = “noncommutative χ(π1(EK))” ←→ “virtual space”

(Please refer to [B1] in detail.) Namely, we can regard the Kauffman bracket skein
module Kt(EK) as a “noncommutative χ(π1(EK))”. Then, roughly speaking, the
recursion relation of the colored Jones polynomial coming from Ker(πt) represents
a defining polynomial of a “noncommutative” SL(2, C)-character variety, which in-
cludes information of the A-polynomial of K. Therefore, if Ker(πt) is non-trivial for
any knot, then the colored Jones polynomial always represents a “noncommutative”
SL(2, C)-character variety. It is uncertain whether or not Ker(πt) 6= 0 for any knot
has not been shown yet. Hence we are interested in the “non-triviality” of Ker(πt)
and so the A-ideal.

On the other hand, Garoufalidis and Le recently showed the following theorem:

Theorem 1 (Garoufalidis-Le [GL]). For any knot K, the colored Jones polynomial
Jn(K) has a recursion relation in terms of n.

As well-known, the colored Jones polynomial is the quantum sl(2, C)-invariant.
They showed this theorem by using some properties of the quantum group Uq(sl(2, C))
and some method in complex analysis. This is why we cannot derive information of
the recursion relations coming from the Lie group SL(2, C) from Garoufalidis-Le’s
theorem so far.

Now, in the case of the (2, 2p + 1)-torus knot, for any p ∈ Z, the non-triviality
of Ker(πt) was shown ([GS]). To investigate the non-triviality of Ker(πt) in other
cases, we first focus on the case of the m-twist knot. Let Km be the m-twist knot
(m ≥ 0) as in Figure 1. (Here it suffices to observe the case where m ≥ 0, since we
can reduced the case where m < 0 to the above case by using the reflection.)

Km =

m 2 1

· · ·

Figure 1. The m-twist knot Km: the twists are ordered from the
right to the left

Remark 1. We see immediately that the diagram in Figure 1 is alternating and
irreducible, so the minimal crossing number of Km is exactly m + 2. (Please refer
to [K, M, T] in detail.)
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Recently the following result is announced in [BL].

Theorem 2 (Bullock-LoFaro [BL]).

Kt(EKm
) = SpanC[t,t−1]{xi · yj|i ∈ Z≥0, m ≥ j ≥ 0},

where x and y are knots in Figure 3 and the notation xi (resp. yj) means the
i-parallel of x (resp. j-parallel of y) and xi · yj means xi together with yj.

Remark 2. The notation “·” in the above theorem does not mean a “multiplication”
in the KBSM Kt(EKm

). In general, a KBSM does not have multiplicative operations.
However the notation makes sense as stated in Theorem 2.

We cannot see the underlying diagrammatic structure of Kt(EKm
) in [BL], al-

though the KBSM is a diagrammatic object. For example, we cannot see directly
why ym+1 does not appear in Kt(EKm

).
Our target in this paper is the relation in Kt(EKm

) which makes ym+1 into a
sum of terms with lower degree in terms of y. (See Subsection 2.5.) This relation
may help us to find a “simple” element of Ker(πt) in the case of the m-twist knot,
if Ker(πt) is non-trivial. In the final section, we will show an application of the
minimal relation to the SL(2, C)-character variety of Km.

2. Minimal relation in the KBSM

2.1. KBSM of 3-manifold. For a compact orientable 3-manifold M , the Kauffman
bracket skein module Kt(M) (KBSM for short) is defined. Namely, Kt(M) is the
quotient of the C[t, t−1]-module C[t, t−1]LM generated by all isotopy classes of framed
links in M (including the empty link φ) by the C[t, t−1]-submodule generated by all
possible the elements as follows:
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− (−t2 − t−2)L,

where each depiction above is a diagram on an open disk
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

in Int(B3) and each

framed link in the first relation is identically embedded in M except in Int(B3).
The above relations introduced in C[t, t−1]LM is called the Kauffman bracket skein
relations. In this paper, we will treat only a knot exterior and a handlebody of genus
two as M . In these cases, the framing is presented by the blackboard framing. Then
the Kauffman bracket skein relations are simply depicted as follows:

− t − t−1 , L ⊔ − (−t2 − t−2)L,

An element of Kt(M) is called a skein. There exist some observed KBSM’s, for
instance, F × [0, 1] where F is an orientable surface ([P]), twisted I-bundle of a non-
orientable surface ([P]), the exterior of a knot in S3 ([B2, BL]), lens spaces ([HP])
and so on.
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Remark 3. For any compact orientable 3-manifold M , the KBSM K−1(M) at t =
−1 has a “multiplicative operation” defined as a disjoint union. This operation is
well-defined, since the sign of a crossing in a link can be ignored by the Kauffman
bracket skein relation at t = −1. So K−1(M) becomes an algebra.

2.2. KBSM of m-twist knot exterior. Let Km be the m-twist knot (m ≥ 0) in
S3, and let H2 be a handlebody of genus two. Since the tunnel number of Km is 1,
the exterior EKm

has the following decomposition:

EKm
= H2 ∪ (2-handle).

Here the following two theorems are the keys to investigate Kt(EKm
).

Theorem 3 (Przytycki [P]). Under the same notations as in Theorem 2, the fol-
lowing holds:

Kt(H2) = SpanC[t,t−1]{xiyjzk | i, j, k ∈ Z≥0},
where skeins x, y and z are as in Figure 2.

x

y

z
.

Figure 2. Skeins x, y and z in Kt(H2)

Theorem 4 (Przytycki [P]).

Kt(EK) = Kt(H2)/J,

where J is the submodule of Kt(H2) generated by

{L− sl(L)|L : any framed link in H2}.
The writing “sl” means the resulting link L after an arbitrary handle slide.

We see immediately that in K(EKm
) the skein z is identified with the skein x as

seen in Figure 3 (via a handle slide relation).

m 2 1

· · ·

x y

z = x

Figure 3. Skeins x, y and z in Kt(EKm
)
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2.3. Attaching slope of H2 ∪ (2-handle). We will depict a attaching slope of
H2∪ (2-handle). Let us drill a tunnel in the knot complement near the clasping part
as below:

xxxxxxx
xxxxxxx
xxxxxxx

tunnel

.

Then focus on the attaching slope of removed 2-handle and the resulting handlebody
of genus two. A boundary of S1× I ⊂ D2× I is attached to the thin curve depicted
in Figure 4.

.....

m 2 1

Figure 4. Attaching slope of H2∪ (2-handle): thick lines mean holes
corresponding genera of H2. The thin curve means the attaching slope
and it lies on the boundary of H2.

For convenience, we omit the outer thick curve corresponding to the boundary of
H2 from now. Regarding the attaching slope as a skein in Kt(H2), we can consider
any handle slide relation as a band sum of two skeins in Kt(H2) along some band b.

2.4. Minimal relation in the KBSM of twist knot. First, we define the minimal
relation in the KBSM of the m-twist knot.

Definition 1. The minimal relation in Kt(EKm
) is the relation Rm(t) = 0 in

Kt(EKm
) such that Rm(t) is monic as an element of C[t, t−1, x][y] and has mini-

mal degree in terms of y in all the relations.

The minimal relation is uniquely determined up to the powers of t and t−1. By
Theorem 2, the degree of Rm(t) in terms of y is clearly m+1. The minimal relation
Rm(t) = 0 does not generate all underlying relations in the KBSM Kt(EKm

). For
example,

ym+2 = y · ym+1 6= y · (ym+1 −Rm(t)).

However the relation at t = −1 means the defining polynomial of the KBSM at
t = −1. Namely,

K−1(EKm
) = C[x, y]/〈Rm(−1)〉,

not as module but as algebra, where 〈Rm(−1)〉 is the ideal in C[x, y] generated by
Rm(−1). This is shown by using the fact that Kt(EKm

) is free as module.
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2.5. Diagrammatic approach to the minimal relation. We will discuss the
skein Xi in Kt(H2) defined as follows:

Xi := .....

.....

.....

.....

m i i− 1 1

.

X0 := (−t2 − t−2)φ.

Lemma 1 (Recursion relation of Xi). The skein Xi, (m+1 ≥ i ≥ 0), as an element
in Kt(EKm

) satisfies the following recursion relation:

Xi+2 − t2yXi+1 + t4Xi + 2t2x2 = 0, X1 = −t2x2 − t4y, X0 = −t2 − t−2.

Proof. All of the operations below are done in the handlebody H2. First, transform
Xi+1 as follows:

(−t−3) .....

.....

.....

.....

m i i− 1 1

.

Then slide the kink to the right side as below:

(−t−3) .....

.....

.....

.....

m i i− 1 1

.

Here resolve the crossing by using the skein relation. For example,

= t + t−1 ,

= (−t3)2 ,

= (−t3) .
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Substituting z = x, we can get the recursion relation stated in Lemma 1. �

Lemma 2 (General term). The skein Xi, (m + 1 ≥ i ≥ 0), as an element in
Kt(EKm

) is formulated as follows:

Xi = −t2(i−2)(t6Si(y) + t4Si−1(y)x2 − t2Si−2(y))− 2t2x2
i−2∑

n=0

t2nSn(y),

where Si(y) is the element in C[t, t−1]LH2
defined recursively as follows:

Si+2(y) = ySi+1(y)− Si(y), S1(y) = y, S0(y) = 1 · φ.

Lemma 3 (handle slide relations). For any non-negative integer m, Xm as an
element in Kt(EKm

) has the following relation:

Xm+1 + t−4Xm + t−2x2 = 0.

Proof. All of the operations below are done in the handlebody H2. First, consider
the following band sum of Xm+1 and the attaching slope along a band b:

.....
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx m 2 1b

attaching slope

Xm+1.

Let slb(Xm+1) be the resulting knot after the band sum. Then a relation slb(Xm+1)−
Xm+1 = 0 holds in Kt(EKm

). Resolving slb(Xm+1) and substituting z = x, we get,

slb(Xm+1) = −t−4Xm − t−2x2.

This completes the proof. �

Theorem 5. For any non-negative integer m, the following relation is derived from
the handle slide relation in Lemma 3:

Rm(t) := Sm+1(y) + t−6Sm(y)− t−4Sm−1(y)− t−10Sm−2(y)

+
{
t−2Sm(y) + (2t−4 + t−8)Sm−1(y)

}
x2

+

{
2(t−2m−2 + t−2m−6)

m−2∑

i=0

t2iSi(y)x2 − t−2m−6

}
x2

= 0.

Remark 4. degy(Si(y)) = i and Si(y) is monic.

Recalling Theorem 2, we find that Rm(t) = 0 is the minimal relation in Kt(EKm
).

2.6. How to get all the relations in terms of y. In addition, we can get all the
relations in terms of y. We will show the method below.
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Let us focus on the following skein yk ∗Xi, (k ∈ Z≥0, m + 1 ≥ i ≥ 0), in Kt(H2)

yk ∗Xi := .....

.....

.....

.....

m i i− 1 1

yk

, (m+1 ≥ i ≥ 1),

yk ∗X0 := ykX0.

Then we can show the following equation.

Lemma 4. For k ∈ Z≥0, i ∈ {1, · · · , m + 1}, yk ∗ Xi as an element of Kt(EKm
)

satisfies the following relation:

yk ∗Xi = yk−1 ∗ (t4yXi + (−t6 + t2)Xi−1 + 2(−t4 + 1)x2).

Proof. First, consider the following configuration of yk ∗Xi.

.....

.....

.....

i 1

yk−1

.

Then we can calculate yk ∗Xi as follows:

yk ∗Xi = .....

.....

.....

i 1

yk−1

(1)

= −t−1
.....

.....

.....

i 1

yk−1

(2)

+
.....

i 1

yk−1

(3)
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+
.....

i 1

yk−1

(4)

+ t−2
.....

.....

.....

i 1

yk−1

.(5)

The last term (5) in the above calculation is exactly t−2yk−1 ∗ Xi−1. Considering
x = z, we see that (3) and (4) are x2yk−1. (2) can be calculated via resolution on
page 46 and is

yk−1 ∗ (t4yXi − t6Xi−1 − 2t4x2).

(Note that yk ∗ xj = xjyk.) This completes the proof. �

We can derive the relation in terms of y from the relation in Lemma 4 as follows.
For any k ∈ Z≥0,

yk ∗Xm+1 = yk−1 ∗ (t4yXm+1 + (−t6 + t2)Xm + 2(−t4 + 1)x2)

= yk−2 ∗ (t4(y ∗Xm+1) · y + (−t6 + t2)y ∗Xm + 2(−t4 + 1)x2y)

· · ·

=
m+1∑

j=0

fj(t, t
−1, y)Xj,

where fm+1(t, t
−1, y) = t4kyk. Here there exists no interaction between fj(t, t

−1, y)
and Xj in fj(t, t

−1, y)Xj, hence we can get its general term by the same way as
Lemma 2. Namely, its general temrs is presented by fj(t, t

−1, y) times the general
term of Xj . We can check that a handle slide relation also holds for yk ∗Xm+1 and
is

yk ∗Xm+1 + t−4yk ∗Xm + t−2x2yk = 0.

In the end, combining the above handle slide relation and the general term of
fj(t, t

−1, y)Xj, we get the relation

yk+m+1 =

k+m∑

j=0

gj(t, t
−1, x)yj.

This is how to calculate all the relations in terms of y.

3. Application to the character variety of the m-twist knot

We focus on Bullock’s theorem.
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Theorem 6 (Bullock [B1]). For any compact orientable 3-manifold M , there exists
a surjective homomorphism Φ as algebra

Φ : K−1(M)→ χ(π1(M)),

defined by Φ(K) := −t[K], Φ(K1⊔· · ·⊔Ki) :=
∏i

j=1 Φ(Ki), where [K] is an element

of π1(M) represented by the knot K with an unspecified orientation. Moreover the
kernel of Φ is the nilradical

√
0.

According to Bullock’s theorem, Rm(−1) has information of the defining polyno-
mial of the character variety X(π1(EKm

)). By Maple, we can observe the following
factorizations of Rm(−1) over Q:

R0(−1) = y + 2,

R1(−1) = (y + 2)(y + x2 − 1),

R2(−1) = (y + 2)(y2 + x2y − y + x2 − 1),

R3(−1) = (y + 2)(y3 + x2y2 − y2 − 2y + x2y + 1),

R4(−1) = (y + 2)(y4 + x2y3 − y3 − 3y2 + x2y2 − x2y + 2y + 1),

R5(−1) = (y + 2)(y5 + x2y4 − y4 − 4y3 + x2y3 − 2x2y2 + 3y2 + 3y − x2y + x2 − 1).

In fact, we can get the following decomposition in general case.

Lemma 5. For any non-negative integer m, the minimal relation Rm(−1) has the
following decomposition:

(y + 2)

(
Sm(y)− Sm−1(y) + x2

m−1∑

i=0

Si(y)

)
.

Moreover, the factor Sm(y)− Sm−1(y) + x2
∑m−1

i=0 Si(y) is irreducible over Q.

Proof. The first statement can be shown by using the properties of the Chebyshev
polynomial Sm. The second statement can be proved by a result on the trace field
shown by J. Hoste and P. Shanahan ([HS]). Let us define the following notation:

R̃m(x, y) := Sm(y)− Sm−1(y) + x2
m−1∑

i=0

Si(y).

In the case of m = 0, 1, (that is the case of the unknot and the right-handed trefoil
which are non-hyperbolic knots), it was observed above. Next, consider the case
where m ≥ 2. Then the twist knot Km is hyperbolic. Hence there exists the discrete
faithful representation

ρ0 : π1(EKm
)→ SL(2, C)

of π1(EKm
). By Theorem 6, we can regard the skeins x and y as the functions −tx

and −ty, respectively. Here x is a meridional skein and the factor y + 2 corresponds
to the abelian representations of π1(EKm

), so we can assume that

x(ρ0) = −tx(ρ0) = −2, y(ρ0) = −ty(ρ0) = α,

where α is a solution of R̃m(−2, y) = 0 over C.
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Now, by Corollary 1 in [HS] and Remark 1, the extension field Q(tγ(ρ0) : γ ∈
π1(EKm

)) over Q, called the trace field of Km, has degree m. Namely,

[Q(tγ(ρ0) : γ ∈ π1(EKm
)) : Q] = m.

Meanwhile, the degree of R̃m(−2, y) in terms of y is m. Here we can easily show
that Q(tγ(ρ0) : γ ∈ π1(EKm

)) is simple extension, that is,

Q(tγ(ρ0) : γ ∈ π1(EKm
)) = Q(α).

(For example, show this using the fact χ(π1(EKm
)) = C[t[x], t[y]], where [x] and [y]

are elements in π1(EKm
) represented by the knots x and y, respectively.) Hence

R̃m(−2, y) must be irreducible over Q. It is not so hard to see that if R̃m(x, y) is

reducible, then so is R̃m(−2, y). These two facts complete the proof. �

By Lemma 5, we get the following result:

Theorem 7. The KBSM K−1(EKm
) has trivial nilradical. Therefore the following

holds:

χ(π1(EKm
)) = C[x, y]/〈Rm(−1)〉.

Hence the minimal relation Rm(−1) at t = −1 is the defining polynomial of X(π1(EKm
)).

Note that by using Lemma 5 we can show the minimality of Rm(t) without The-
orem 2.
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